
统计之 - Contingency Table
In statistics, a Contingency Table(also referred to as Cross Tabulationor cross tab) is a type of table in a matrix format that displays the(multivariate) frequency distribution of thecategorical variables.The term contingency table was first used by Karl Pearson in "On the Theoryof Contingency and Its Relation to Association and Normal Correlation",[1]part of the Drapers' Company Research Memoirs Biometric Series I published in1904.
A crucial problem of multivariate statistics is finding(direct-)dependence structure underlying the variables contained inhigh-dimensional contingency tables. If some of the conditional independencesare revealed, then even the storage of the data can be done in a smarter way(see Lauritzen (2002)). In order to do this one can use information theoryconcepts, which gain the information only from the distribution of probability,which can be expressed easily from the contingency table by the relative frequencies.
Suppose that we have two variables, sex (male or female) and handedness(right- or left-handed). Further suppose that 100 individuals are randomlysampled from a very large population as part of a study of sex differences inhandedness. A contingency table can be created to display the numbers ofindividuals who are male and right-handed, male and left-handed, female andright-handed, and female and left-handed. Such a contingency table is shown below.
The numbers of the males, females, and right- and left-handedindividuals are called Marginal Totals. The grand total, i.e., the totalnumber of individuals represented in the contingency table, is the number inthe bottom right corner.
The table allows us to see at a glance that the proportionof men who are right-handed is about the same as the proportion of women whoare right-handed although the proportions are not identical. The significanceof the difference between the two proportions can be assessed with a variety ofstatistical tests including Pearson's chi-squared test, the G-test, Fisher'sexact test, and Barnard's test, provided the entries in the table representindividuals randomly sampled from the population about which we want to draw aconclusion. If the proportions of individuals in the different columns varysignificantly between rows (or vice versa), we say that there is a contingencybetween the two variables. In other words, the two variables are notindependent. If there is no contingency, we say that the two variables areindependent.
The example above is the simplest kind of contingency table,a table in which each variable has only two levels; this is called a 2 x 2contingency table. In principle, any number of rows and columns may be used.There may also be more than two variables, but higher order contingency tablesare difficult to represent on paper. The relation between ordinal variables, orbetween ordinal and categorical variables, may also be represented incontingency tables, although such a practice is rare.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28