
为何大数据会扼杀企业
大数据被很多人吹捧成了大企业的救星:有人说它能预言未来,照亮我们的道路,给古老的商业模式带来新的生机。但是在现实世界中,数据是会杀人的。它能杀死项目,杀死金钱,甚至杀死时间。
25年前,数据的增长速度大约只有每天100GB,而现在,数据的增长速率差不多已达到50,000GB每秒。随着数据量的海量增长,企业也越来越难以凭借自身的能力进行数据分析,从而加大而不是减小了企业战略决策的难度。
时间是我们最宝贵的资源,而数据偷走了我们大量宝贵的时间。我们的感观早已被各种各样的数据淹没。每天我们都会收到数不清的电子邮件、手机短信和提醒消息,每一条信息都会让人分心,降低我们的工作效率。它们将我们抽离了原本该做的事情,迫使我们将注意力放在也许重要、也许不重要的事情上。同理,企业的业务数据也同样多得令人窒息,牵扯了我们的大量精力,已经成了影响企业高效决策的拦路虎。
不妨想象一下,如果有一天,你只会收到对你来说真正重要的信息,而且这些信息还能在正确的时间、在正确的地点找到你,世界将是什么样子。那么你每天至少能多做多少事情?我们将大量的时间耗费在被动消化这些海量信息上,真正用来主动谋划企业发展的时间少之又少。这样既令人心力交瘁,又削弱了企业效能。
更重要的是,数据会令企业丧失精准度。光靠捕捉更多信息并不会自动使企业产生更多价值。有人可能会想,我们收集的数据越多,就越能从中获得好的见解。这种自欺欺人的心态是很危险的。只有当数据能带来准确而重要的见解时,它才是好的数据。
另外,只有与你息息相关的信息才是有用的信息。好的信息必须具备时效性和真实性。然而不幸的是,当企业想从大数据中提取有用的见解时,却经常会起到反效果。举个真实的例子,美国有一个叫麦克·西伊的人是办公用品超市OfficeMax的常客,他的女儿不幸和男友死于一场车祸。OfficeMax不知怎么得知了这个消息,在发给麦克·西伊的自动促销邮件中竟然出现了这样的抬头:“麦克·西伊(女儿死于车祸)。”这并非大数据有意作孽,而是它的相关性(和适宜性)的问题。一个企业要想只收集其确实需要的数据几乎是不可能的,很多时候你收集到的是那些原本不该看到的东西。对于一家公司来说,你收集到的数据很可能是误导性甚至是毁灭性的。大数据虽然能将很多不相关的点连接起来,呈现一幅完整的图画,但是要确保数据的相关性、及时性和真实性,你首先还要正确理解它的背景。
现在,全球每天的数据总量都能达到250万的三次方字节,要想通过大数据获得全面的见解是很难的。你要么会陷入无力分析的境地(因此无法获得见解),要么就更糟糕,你可能会在有限的甚至是被错误解读的数据基础上获得错误的见解。如果没有正确地理解数据的背景,将不啻于椽木求鱼。一些看似有希望改变游戏规则的见解,在实际中却很有可能导致你从游戏中出局。
数据也会扼制你的灵活性。传统的数据分析方法,是将交易系统中的所有数据存放到一个数据仓库里(也有的叫数据湖或数据池),然后运行几套业务智能系统,叫几个或十几个分析师分析上一周的时间,然后把数据导到Excel里,或者做一个PPT。周而复始,得到的见解始终是滞后的。这种数据处理方法其实是一种浪费。由于要处理的数据很多,你得需要很长的时间才能获得有用的或是有可操作性的见解。你需要找到一种透过能繁杂的数据,得到为你的公司量身定制的信息的方法。
当我开车进城的时候,我想知道路上的交通堵不堵,需要多久才能达到目的地。如果有人给我的建议跟我同事上次开车走这条路时一样准确,那我就会不那么依赖GPS应用了。Waze就是这个领域的一款非常强大的应用,因为它截取了所有司机的一个巨大的时间断面的信息。这种全球数据的集中化使得所有用户都能获得与背景环境相关的见解。大数据也需要采取类似的做法。企业现在应该停止在自己公司的范围内积攒业务数据了,而是应该真正利用云计算的规模经济效益,不仅仅做到基础设施与应用的共享,更重要的是做到数据的共享。
如果你想将大量数据变成有价值的见解,你就应该利用一个集中化的全球性平台,因为这样一个平台可以借助大量内部和外部资源消化海量信息。企业将数据收集、管理和分析工作外包出去,就可以使这种通用平台专心研究数据科学,而你只需要集中精力,将它为你量身打造的见解应用在提高企业核心能力、强化企业竞争优势上。
20年前的一场“无软件”运动将世界从线下带到了云端。而今天,我们也需要掀起一场“数据有罪”运动。现在已经到了从收集数据转向让这些数据切实发挥作用的时候了。这将的话,在别人还在空谈“大数据”或疲于内部业务智能项目的时候,我们就能够解放精力进行创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27