京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何改变经济咨询服务行业
大数据已经彻底改变了国家经济的方方面面,但其在经济学领域却没有太大反响,这是一件非常奇怪的事。经过多年经济学和大数据应用前景的研究,笔者深感到大数据技术可以对经济政策分析和经济学研究产生非常深远的影响。
大数据在经济学数据使用方面的潜力
首先,大数据将彻底改变经济学使用数据的实时性。大数据收集的都是实时数据,现在很多企业都在利用实时数据,奇怪的是经济学研究却主要使用汇总数据,很少使用实时数据。汇总数据一般最精准的就是当天的数据,比如汇率,而像通胀数据则是当月的。
其次,大数据将使经济学可调用的数据集规模极度扩大。经济学研究调用的一般是成千上万个时间点(一般最小的时间点是天)的数据,相对于大数据而言,这样的研究样本是很小的,所以经济学研究对研究者的统计学功力依赖很大。然而大数据可以调用数百万、数千万甚至是更多的数据,因此研究者的统计学功力就显得没那么重要。
第三,大数据可以同时观察多个变量之间的互动。经济学常用的数据分析方法是时间序列分析,一般只能研究两个变量之间的互动,比如狭义货币是如何影响通胀的。
第四,大数据结构更少,但层次更多。比如在零售领域,传统经济学的数据收集呈矩形,有N个观察时间点和K个变量,一般K远远小于N。而大数据记载的只是一系列消费行为,其数据并非矩形,也没有更复杂的结构,你可以用统计学方法把这些数据构造成无限多个矩形数据集。
最后,大数据将彻底改变经济学对数据记录之间关系的看法。传统经济学认为每一个记录的数据都是独立的,或者可以集结成面板数据,归根结底也就是时间序列的衍生物。但大数据却非如此,比如社交网络上人与人之间的互动数据是高度复杂的,传统的经济学模型无法揭示社交网络上人与人之间的互动关系,必须使用大数据的方法。
大数据在经济政策分析和经济学研究领域的应用场景
企业运用大数据的场景主要是记录运营过程和结果,并构建涵盖范围广泛的预测类算法。比如Amazon和Netflix应用预测模型为客户推荐影视剧和书籍。预算类算法的可使用范围远远超越了电子商务。比如在医疗保险领域,保险公司通过将病人的付费情况和治疗效果数据导入预算类算法,可以计算其“风险系数”,然后通过风险系数来调整保费标准,而在大数据技术之前,“风险系数”是由病人的病史和相应的统计学分析方法来确定的。其实,大数据若应用到政府领域,也可以极大地改变经济政策分析和经济学研究。
首先,大数据会极大地释放出政府公共事务管理数据的潜在能力。通过管理税收系统、社保系统以及法规条例,政府积累了海量的颗粒状数据。公共管理数据在很大程度上没有被充分利用,主要原因是政府有关部门缺乏大数据硬件、软件和人才基础,另外这些数据也没有通过开放的端口给私营数据供应商使用,而且各地方政府的数据收集标准不一,难以统一维护和管理。在这方面,许多欧洲国家走在世界前列,其中央政府将各级地方政府的教育、医保等数据整合成了针对全国人口的大数据库。
公共管理数据的潜力非常巨大,这些数据涵盖不同个人、企业和机构相当长期的各类行为和状况,一般是面板结构的,数据质量也很高。而且由于这些数据集的涵盖面是普遍的,其可以和其它涵盖面更具选择性的数据集搭配使用。
如果政府向私营数据供应商有限开放这些公共管理数据的应用端口,对经济政策分析和经济学研究无疑将产生巨大推动。比如经济学家Thomas Piketty和Emmanuel Saez利用美国国税局的数据构建了美国最富家庭占全国收入比例的历史数据集。他们的相关研究成果对奥巴马以来的决策者产生了极大的影响,美国最富家庭所占全国收入比例和所占全国纳税总额比率的严重不对称以及日益失衡成为了决策者和立法者探讨税收政策改革的一个话题焦点。
其次,大数据可以改变政府测算经济活动的方式。政府在经济活动的测算方面扮演着极其重要的角色,比如通货膨胀率、失业率和GDP等等的测算都是由政府主导的。一般而言,政府都是通过调研的方式来测算经济活动的。比如国家统计局会派出调研员去商店手动收集成千上万商品的价格,然后将这些数据汇总成不同的通胀指数——CPI就是其中之一。然而大数据技术可以更大规模地收集物价数据,甚至可以做到实时收集。比如,由麻省理工学院斯隆商学院教授Alberto Cavallo和Roberto Rigobon发起的10亿物价项目(BPP),通过成百上千个电商网站和手机应用的端口可以收集数以10万计商品的实时价格数据,从而可以实时发布通胀数据,而不是像国家统计局那样每个月发布一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16