
大数据如何改变经济咨询服务行业
大数据已经彻底改变了国家经济的方方面面,但其在经济学领域却没有太大反响,这是一件非常奇怪的事。经过多年经济学和大数据应用前景的研究,笔者深感到大数据技术可以对经济政策分析和经济学研究产生非常深远的影响。
大数据在经济学数据使用方面的潜力
首先,大数据将彻底改变经济学使用数据的实时性。大数据收集的都是实时数据,现在很多企业都在利用实时数据,奇怪的是经济学研究却主要使用汇总数据,很少使用实时数据。汇总数据一般最精准的就是当天的数据,比如汇率,而像通胀数据则是当月的。
其次,大数据将使经济学可调用的数据集规模极度扩大。经济学研究调用的一般是成千上万个时间点(一般最小的时间点是天)的数据,相对于大数据而言,这样的研究样本是很小的,所以经济学研究对研究者的统计学功力依赖很大。然而大数据可以调用数百万、数千万甚至是更多的数据,因此研究者的统计学功力就显得没那么重要。
第三,大数据可以同时观察多个变量之间的互动。经济学常用的数据分析方法是时间序列分析,一般只能研究两个变量之间的互动,比如狭义货币是如何影响通胀的。
第四,大数据结构更少,但层次更多。比如在零售领域,传统经济学的数据收集呈矩形,有N个观察时间点和K个变量,一般K远远小于N。而大数据记载的只是一系列消费行为,其数据并非矩形,也没有更复杂的结构,你可以用统计学方法把这些数据构造成无限多个矩形数据集。
最后,大数据将彻底改变经济学对数据记录之间关系的看法。传统经济学认为每一个记录的数据都是独立的,或者可以集结成面板数据,归根结底也就是时间序列的衍生物。但大数据却非如此,比如社交网络上人与人之间的互动数据是高度复杂的,传统的经济学模型无法揭示社交网络上人与人之间的互动关系,必须使用大数据的方法。
大数据在经济政策分析和经济学研究领域的应用场景
企业运用大数据的场景主要是记录运营过程和结果,并构建涵盖范围广泛的预测类算法。比如Amazon和Netflix应用预测模型为客户推荐影视剧和书籍。预算类算法的可使用范围远远超越了电子商务。比如在医疗保险领域,保险公司通过将病人的付费情况和治疗效果数据导入预算类算法,可以计算其“风险系数”,然后通过风险系数来调整保费标准,而在大数据技术之前,“风险系数”是由病人的病史和相应的统计学分析方法来确定的。其实,大数据若应用到政府领域,也可以极大地改变经济政策分析和经济学研究。
首先,大数据会极大地释放出政府公共事务管理数据的潜在能力。通过管理税收系统、社保系统以及法规条例,政府积累了海量的颗粒状数据。公共管理数据在很大程度上没有被充分利用,主要原因是政府有关部门缺乏大数据硬件、软件和人才基础,另外这些数据也没有通过开放的端口给私营数据供应商使用,而且各地方政府的数据收集标准不一,难以统一维护和管理。在这方面,许多欧洲国家走在世界前列,其中央政府将各级地方政府的教育、医保等数据整合成了针对全国人口的大数据库。
公共管理数据的潜力非常巨大,这些数据涵盖不同个人、企业和机构相当长期的各类行为和状况,一般是面板结构的,数据质量也很高。而且由于这些数据集的涵盖面是普遍的,其可以和其它涵盖面更具选择性的数据集搭配使用。
如果政府向私营数据供应商有限开放这些公共管理数据的应用端口,对经济政策分析和经济学研究无疑将产生巨大推动。比如经济学家Thomas Piketty和Emmanuel Saez利用美国国税局的数据构建了美国最富家庭占全国收入比例的历史数据集。他们的相关研究成果对奥巴马以来的决策者产生了极大的影响,美国最富家庭所占全国收入比例和所占全国纳税总额比率的严重不对称以及日益失衡成为了决策者和立法者探讨税收政策改革的一个话题焦点。
其次,大数据可以改变政府测算经济活动的方式。政府在经济活动的测算方面扮演着极其重要的角色,比如通货膨胀率、失业率和GDP等等的测算都是由政府主导的。一般而言,政府都是通过调研的方式来测算经济活动的。比如国家统计局会派出调研员去商店手动收集成千上万商品的价格,然后将这些数据汇总成不同的通胀指数——CPI就是其中之一。然而大数据技术可以更大规模地收集物价数据,甚至可以做到实时收集。比如,由麻省理工学院斯隆商学院教授Alberto Cavallo和Roberto Rigobon发起的10亿物价项目(BPP),通过成百上千个电商网站和手机应用的端口可以收集数以10万计商品的实时价格数据,从而可以实时发布通胀数据,而不是像国家统计局那样每个月发布一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18