
从三大行业看大数据应用的三重境界:数据、分析、成果
各行各业在大数据的应用上可以说是已经渐入佳境,资产管理、运营优化、风险管理等都已经有数据分析参与其中,当然这个过程最重要的还是从业务场景出发让数据真正产生价值。
Teradata把企业数据分析分为四个重要领域——客户体验、多元化数据分析、异构数据整合、海量的业务规模。做好这些也就可以实现大数据应用的三重境界:“数据、分析、成果”。
但在各种因素的影响下,企业在数据应用的过程中也会遇到三大挑战:一、业务层面,在业务场景中分析改进;二、人才层面,人才资源压力是每一个企业都面临的问题;三、架构层面,需要考虑架构的高性能、敏捷性、可扩展性以及成本等因素。
Teradata则可以提供业务分析解决方案、生态系统架构咨询、混合云解决方案。Teradata天睿公司大中华区副总裁、咨询及服务部门总经理唐青(Janet Tang)说,我们希望从业务的视角回答客户的问题,同时我们还有成熟的业务框架和咨询团队,最后就是支撑混合云能力,实现跨平台的输出。
当然大型企业和中小型企业的大数据实施不尽相同,Teradata天睿公司北京金融团队咨询服务部总监张天峰指出,中小企业一般的步骤是诊断、规划、路线图、速赢,重点是找到典型业务场景,扎实落地,实现速赢。
三大行业大数据实战
航空、快递、金融是三个非常典型的服务业,他们都具备数据驱动的特点,三个案例作为行业中的缩影,可以更好地了解大数据在行业中的应用模式和方法。
航空
消费者在选择航空公司时通常会更关心服务和价格,“十三五规划”对于航空业的规划是要在2020年将整体航运能力提升60%。在面对运力上升,运价透明等市场挑战下,航空公司如何做到把握趋势创造市场需求?
基于大数据分析,航空业还有很多业务提升的机会,如航空公司的航线规划,可以通过大数据来分析客流、成本、机型。再比如,有些航班上座率不高,可以使用大数据分析来设计航班的合并取消优化策略以提升运营效率。
航空公司通过算法预测趋势制定经营策略,做到最优的运力和运价。在运价上通过竞争分析、客户预测等一系列数据进行分析。
快递
快递行业在近几年可以称得上是黄金年代,在快速的成长后快递行业逐渐进入到成熟期,这就需要构建健全的管理体系,来面对激烈的市场竞争带来的盈利压力。
快递行业收益管理的三要素是成本分析、网点细分和价格策略。在唐青看来快递业比航空业的竞争更加惨烈,因为快递的供应链长且参与者多,所以要在各个环节上进行优化。
某快递公司的问题是其有很多加盟企业,如何让加盟企业的销售和成本同时纳入到整体管理中。企业最终实现大数据的收集和分析,帮助进行业务的决策,例如成本分析、网点特性、价格体系、预演分析、试点落地、回顾评审、市场(产品)推广等。
金融
金融行业是一个最容易流失客户的行业,原来的银行是以开设更多网点来吸纳客户,现在则需要多种产品组合来打动客户。
某银行基于市场环境提出了二次转型的目标,以客户为中心优化整个营销体系,实现客户精细化管理。识别出客户需要哪些产品,未来需要开拓哪些潜在客户,同时进行客户分级。利用数据分析从产品视角、客户视角得到新的业务商机。Teradata可以帮助金融行业识别客户属于哪一生命周期,通过客户标签系统识别客户行为,最终制定营销策略。
银行的数据基础相对较好,但是依然有很多数据的空白,像市场数据、征信数据,这对于产品成本的核算、定价带来挑战,这需要更多外部数据的补充完善分析结果。
上述三个行业都属于B2C领域,当然服务业除了个人业务还有对公业务。由于业务类型的不同,关注点也有所不同,个人业务更多以客户生命周期来讨论,对公业务更多和监管相关。唐青提到,个人业务更注重交易行为,在结合大数据的可能性上也更加丰富,在风险管控、创新点都走的更为靠前。
现在很多大型企业都把大数据用在精细化运营上,精细化运营对于企业来讲也是一个永久不变的话题,只不过之前太过粗放的管理模式,以及利润率的逐渐降低,也让现阶段的精细化运营显得非常重要,需要通过数据分析提升效率。
Teradata天睿公司华东区咨询服务部专业服务总监陈焰表示,开源、节流越来越要求从数据层面开始解决,例如物流公司看到哪一个航线的收益率更大,这些归根结底都是企业对盈利能力要求的提升。
在精细化运营的同时,企业利用数据分析的最终目的还是实现商业模式的创新。像航空公司基于“一带一路”战略开拓新航线,电信公司寻找数据变现的价值等等。Teradata也在通过其专业服务团队帮助企业建立创新实验室,真正可以创造出新的业务,让数据产生价值的同时实现最大化利用进行变现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18