京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言:基本函数、统计量、常用操作函数
先言:R语言常用界面操作
帮助:help(nnet) = ?nnet =??nnet
清除命令框中所有显示内容:Ctrl+L
清除R空间中内存变量:rm(list=ls())、gc()
获取或者设置当前工作目录:getwd、setwd
保存指定文件或者从磁盘中读取出来:save、load
读入、读出文件:read.table、wirte.table、read.csv、write.csv
1、一些简单的基本统计量
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#基本统计量
sum/mean/sd/min #一些基本统计量
which.min() #找出最小值的序号
以上是单数列,如果是多变量下的呢?
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#多元数据
colMeans() #每列,row是行(横向)
colnames() #列名
colSums() #列求和
cov() #协方差阵
cor() #相关矩阵
cor.test() #相关系数
abs 绝对值
sqrt 平方根
exp e^x次方
log 自然对数
log2,log10 其他对数
sin,cos,tan 三角函数
sinh,cosh,tanh 双曲函数
poly 正交多项式
polyroot 多项式求根
对象操作:
assign 赋值操作,等同于“<-”
rm 删除对象
ls 显示内存中的对象
str 显示对象的内在属性或简要说明对象
ls.str 展示内存中所有对象的详细信息
length 返回对象中元素的个数
names 显示数据的名称,对于数据框则是列名字
levels 因子向量的水平
dim 数据的维度
nrow 矩阵或数据框的行数
ncol 列数
rownames 数据的行名字
colnames 列名字
class 数据类型
mode 数据模式
head 数据的前n行
tail 数据的后n行
summary 显示对象的概要
attr x的属性类型
is.na 检测变量的类型
is.null
is.array
is.data.frame
is.numeric
is.complex
is.character
简单统计:
max 最大元素
min 最小元素
range 最小值和最大值组成的向量
sum 和
prod 元素连乘
pmax 向量间相同下标进行比较最大者,并组成新的向量
pmin 向量间相同下标进行比较最小者,并组成新的向量
cumsum 累积求和
cumprod 连乘
cummax 最大
cummin 最小
mean 均值
weighted,mean 加权平均数
median 中位数
sd 标准差
norm 正态分布
f F分布
unif 均匀分布
cauchy 柯西分布
binom 二项分布
geom 几何分布
chisq.test 卡方检验,进行独立性检验
prop.test 对总体均值进行假设检验
shapiro.test 正态分布检验
t.test T检验,对总体均值进行区间估计
aov 方差分析
anova 一个或多个模型对象的方差分析
2、向量
向量在循环语句中较为广泛
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#向量
#向量在循环语句中较为广泛
M=vector(length = 8);M #生成一个长为8的布尔向量
M[1]="1";M #赋值之后就会定义为字符
M[1]=1;M #赋值之后,定义为数值
逻辑向量使用
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
y[y < 0] <- -y[y < 0] #表示将向量(-y)中 与向量y的负元素对应位置的元素 赋值给 向量y中 与向量y负元素对应的元素。作用相当于: y <- abs(y)
3、数据储存形式
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#数据储存形式
data.frame(wi=iris,ci=cars) #数据框形式,可以直接定义变量名
list(wi=iris,ci=cars) #list,也可以直接定义变量名
注意:attach()、detach()
可以将数据框中的变量释放到Rs内存中,然后就可以直接调用。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
attach(iris)
names(setosa)
detach(iris)
在data.frame中,是可以实现数据集重命名的,比如data.frame(x=iris,y=cars),
也可以实现横向、纵向重命名,data.frame(x=iris,y=cars,row.names=iris)
4、数据查看函数——names、str、unique组合、typeof()、mode()、class()
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
##数据查看函数
names(iris) #查看所有变量名字
str(iris) #变量属性(int整数,num数值)
unique(iris$setosa) #查看分类变量的水平
table(iris$setosa) #分类水平,不同水平的个数(=unique+sum功能)
summary(iris) #所有变量各自的均值、分位数、众数、最大、最小值等统计量,在回归中就是系数表等
attributes(iris) #包括names(变量名)、row.names(序号的名称)、class(数据形式)
一般names、str、unique会组合使用。
如何查看数据类型——typeof()、mode()、class()的区别?
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
我这里用个因子例子来说明,希望能讲清楚
> gl(2,5) #新建一个因子
[1] 1 1 1 1 1 2 2 2 2 2
Levels: 1 2
> class(gl(2,5)) #查看变量的类,显示为因子;
[1] "factor"
> mode(gl(2,5)) #查看数据大类,显示为数值型;
[1] "numeric"
> typeof(gl(2,5)) #查看数据细类,显示为整数型;
[1] "integer"
#来自:http://f.dataguru.cn/thread-99785-1-1.html
从精细度上说,typeof>mode>class.
5、矩阵的基本知识与注意
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#矩阵的基本知识
t() #转置
det() #行列式,方阵
x%*%y #向量内积
x%o%y#向量外积
A=array(1:9,dim=c(3,3))
A*A #这个代表矩阵内两两子元素相乘
A%*%A #才是我们想要的结果
crossprod(A,A) #等于t(A)%*%A
crossprod(t(A),A) #等于A%*%A,所以需要t(A)一下
t 矩阵转置
rowsum 行求和
colsum 列求和
rowmeans 行平均
colmeans 列平均
solve 对线性方程求解或求矩阵的逆
diag 对角阵
6、因子
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
##因子(≈文本+数字的组合)
#SPSS中值标签定义有异曲同工之妙
M=factor(iris$setosa,levels=c(1,0),labels=c("M","F"));M #能够转化因子格式+定义值标签
M=as.factor(iris$setosa);M #上面的函数更有效,因为as.factor只能转化成因子格式
7、输入输出
library 加载包
data 加载制定数据集
load 加载save或者save.image保存的数据
read.table 读取表格
read.csv 读取以逗号分割的表格
read.delim 读取以tab分割个表格
read.fwf 以fixed width formatted 形式读取数据至表格
save 二进制保存指定对象
save.image 二进制保存当前线程内所有对象
write.table 将数据以表格形式写入文本
write.csv 将数据以CSV表格形式写入文本
cat 强制转化为字符后输出
sink 输出转向到指定文件
print 输出屏幕
format 格式化
8、逻辑运算
!x 逻辑非
x & y 逻辑与
x && y 逻辑与(仅匹配并返回第一个值)
x | y 逻辑或
x || y 逻辑或(仅返回第一个值)
x or (x,y) 异或
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11