京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言:基本函数、统计量、常用操作函数
先言:R语言常用界面操作
帮助:help(nnet) = ?nnet =??nnet
清除命令框中所有显示内容:Ctrl+L
清除R空间中内存变量:rm(list=ls())、gc()
获取或者设置当前工作目录:getwd、setwd
保存指定文件或者从磁盘中读取出来:save、load
读入、读出文件:read.table、wirte.table、read.csv、write.csv
1、一些简单的基本统计量
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#基本统计量
sum/mean/sd/min #一些基本统计量
which.min() #找出最小值的序号
以上是单数列,如果是多变量下的呢?
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#多元数据
colMeans() #每列,row是行(横向)
colnames() #列名
colSums() #列求和
cov() #协方差阵
cor() #相关矩阵
cor.test() #相关系数
abs 绝对值
sqrt 平方根
exp e^x次方
log 自然对数
log2,log10 其他对数
sin,cos,tan 三角函数
sinh,cosh,tanh 双曲函数
poly 正交多项式
polyroot 多项式求根
对象操作:
assign 赋值操作,等同于“<-”
rm 删除对象
ls 显示内存中的对象
str 显示对象的内在属性或简要说明对象
ls.str 展示内存中所有对象的详细信息
length 返回对象中元素的个数
names 显示数据的名称,对于数据框则是列名字
levels 因子向量的水平
dim 数据的维度
nrow 矩阵或数据框的行数
ncol 列数
rownames 数据的行名字
colnames 列名字
class 数据类型
mode 数据模式
head 数据的前n行
tail 数据的后n行
summary 显示对象的概要
attr x的属性类型
is.na 检测变量的类型
is.null
is.array
is.data.frame
is.numeric
is.complex
is.character
简单统计:
max 最大元素
min 最小元素
range 最小值和最大值组成的向量
sum 和
prod 元素连乘
pmax 向量间相同下标进行比较最大者,并组成新的向量
pmin 向量间相同下标进行比较最小者,并组成新的向量
cumsum 累积求和
cumprod 连乘
cummax 最大
cummin 最小
mean 均值
weighted,mean 加权平均数
median 中位数
sd 标准差
norm 正态分布
f F分布
unif 均匀分布
cauchy 柯西分布
binom 二项分布
geom 几何分布
chisq.test 卡方检验,进行独立性检验
prop.test 对总体均值进行假设检验
shapiro.test 正态分布检验
t.test T检验,对总体均值进行区间估计
aov 方差分析
anova 一个或多个模型对象的方差分析
2、向量
向量在循环语句中较为广泛
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#向量
#向量在循环语句中较为广泛
M=vector(length = 8);M #生成一个长为8的布尔向量
M[1]="1";M #赋值之后就会定义为字符
M[1]=1;M #赋值之后,定义为数值
逻辑向量使用
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
y[y < 0] <- -y[y < 0] #表示将向量(-y)中 与向量y的负元素对应位置的元素 赋值给 向量y中 与向量y负元素对应的元素。作用相当于: y <- abs(y)
3、数据储存形式
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#数据储存形式
data.frame(wi=iris,ci=cars) #数据框形式,可以直接定义变量名
list(wi=iris,ci=cars) #list,也可以直接定义变量名
注意:attach()、detach()
可以将数据框中的变量释放到Rs内存中,然后就可以直接调用。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
attach(iris)
names(setosa)
detach(iris)
在data.frame中,是可以实现数据集重命名的,比如data.frame(x=iris,y=cars),
也可以实现横向、纵向重命名,data.frame(x=iris,y=cars,row.names=iris)
4、数据查看函数——names、str、unique组合、typeof()、mode()、class()
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
##数据查看函数
names(iris) #查看所有变量名字
str(iris) #变量属性(int整数,num数值)
unique(iris$setosa) #查看分类变量的水平
table(iris$setosa) #分类水平,不同水平的个数(=unique+sum功能)
summary(iris) #所有变量各自的均值、分位数、众数、最大、最小值等统计量,在回归中就是系数表等
attributes(iris) #包括names(变量名)、row.names(序号的名称)、class(数据形式)
一般names、str、unique会组合使用。
如何查看数据类型——typeof()、mode()、class()的区别?
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
我这里用个因子例子来说明,希望能讲清楚
> gl(2,5) #新建一个因子
[1] 1 1 1 1 1 2 2 2 2 2
Levels: 1 2
> class(gl(2,5)) #查看变量的类,显示为因子;
[1] "factor"
> mode(gl(2,5)) #查看数据大类,显示为数值型;
[1] "numeric"
> typeof(gl(2,5)) #查看数据细类,显示为整数型;
[1] "integer"
#来自:http://f.dataguru.cn/thread-99785-1-1.html
从精细度上说,typeof>mode>class.
5、矩阵的基本知识与注意
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#矩阵的基本知识
t() #转置
det() #行列式,方阵
x%*%y #向量内积
x%o%y#向量外积
A=array(1:9,dim=c(3,3))
A*A #这个代表矩阵内两两子元素相乘
A%*%A #才是我们想要的结果
crossprod(A,A) #等于t(A)%*%A
crossprod(t(A),A) #等于A%*%A,所以需要t(A)一下
t 矩阵转置
rowsum 行求和
colsum 列求和
rowmeans 行平均
colmeans 列平均
solve 对线性方程求解或求矩阵的逆
diag 对角阵
6、因子
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
##因子(≈文本+数字的组合)
#SPSS中值标签定义有异曲同工之妙
M=factor(iris$setosa,levels=c(1,0),labels=c("M","F"));M #能够转化因子格式+定义值标签
M=as.factor(iris$setosa);M #上面的函数更有效,因为as.factor只能转化成因子格式
7、输入输出
library 加载包
data 加载制定数据集
load 加载save或者save.image保存的数据
read.table 读取表格
read.csv 读取以逗号分割的表格
read.delim 读取以tab分割个表格
read.fwf 以fixed width formatted 形式读取数据至表格
save 二进制保存指定对象
save.image 二进制保存当前线程内所有对象
write.table 将数据以表格形式写入文本
write.csv 将数据以CSV表格形式写入文本
cat 强制转化为字符后输出
sink 输出转向到指定文件
print 输出屏幕
format 格式化
8、逻辑运算
!x 逻辑非
x & y 逻辑与
x && y 逻辑与(仅匹配并返回第一个值)
x | y 逻辑或
x || y 逻辑或(仅返回第一个值)
x or (x,y) 异或
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24