
SAS、R如何手动输入数据
一道简单的题目,将下面的数据分别手动输入到SAS和R中,如何实现?
一、SAS
解决方案:
data cust_base_info;
inputcust_no$ name$sex$ is_marriage$birthday:yymmdd10.aum_m_avgods_date:yymmdd10.@@;
format birthday yymmdd10. ods_date yymmdd10.;
cards;
1LiMingMaleTRUE1984052151428.0620170331
2ZhangHongyiFemaleTRUE198201285203.420170331
3WangSimingMaleFALSE19830806214820170331
4ZhangCongMaleTRUE19830225110092.820170331
5LiuYingFemaleTRUE1988092038004.520170331
6MaMingyueFemaleFALSE198910191168020170331
;
run;
结果:
备注:
(1)字符型的变量需要在变量名后加上'$'符,比如:'cust_no$','name$';数值型变量就不需要,比如:'aum_m_avg'。
(2)日期型的变量,比如'birthday',需要加上相应的格式,比如:'birthday:yymmdd10.'和'format birthday yymmdd10.'。
(3)'@@'表示即时输入时不换行,SAS按照输入的顺序依次读取数据。
二、R语言
解决方案:
##在R中手动输入数据
cust_no <- c('1','2','3','4','5','6')
name<-c('LiMing','ZhangHongyi','WangSiming','ZhangCong','LiuYing','MaMingyue')
sex<-c('Male','Female','Male','Male','Female','Female')
is_marriage<-c('True','True','False','True','True','False')
##R语言中日期的默认输入格式为yyyy-mm-dd
birthday <- c('1984-05-31','1982-01-28','1983-08-06','1983-02-25','1988-09-20','1989-10-19')
##将日期的类型由字符型转化为date型
birthday <- as.Date(birthday)
aum_m_avg<- c(51428.06,5203.4,2148,110092.8,38004.5,11680)
##数据处理日期,由字符型转为date型
ods_date<- as.Date(rep('2017-03-31',6))
cust_base_info<- data.frame(cust_no,name,sex,is_marriage,birthday,aum_m_avg,ods_date)
##查看数据前6行
head(cust_base_info)
结果:
三、小结
手动输入数据,数值型变量最好处理,字符型变量加些格式,也好处理。难点在于日期的输入。
1、SAS中,需要在input时在变量后面加上特殊的日期格式,比如'ods_date:yymmdd10.'和'format ods_date yymmdd10.'。
2、R语言中,默认的输入格式是'yyyy-mm-dd',比如'1984-05-31'。输入完成后,因为它是字符型变量,需要将它用as.Date()函数转化为date型,例如birthday <- as.Date(birthday)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08