京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS、R如何手动输入数据
一道简单的题目,将下面的数据分别手动输入到SAS和R中,如何实现?
一、SAS
解决方案:
data cust_base_info;
inputcust_no$ name$sex$ is_marriage$birthday:yymmdd10.aum_m_avgods_date:yymmdd10.@@;
format birthday yymmdd10. ods_date yymmdd10.;
cards;
1LiMingMaleTRUE1984052151428.0620170331
2ZhangHongyiFemaleTRUE198201285203.420170331
3WangSimingMaleFALSE19830806214820170331
4ZhangCongMaleTRUE19830225110092.820170331
5LiuYingFemaleTRUE1988092038004.520170331
6MaMingyueFemaleFALSE198910191168020170331
;
run;
结果:
备注:
(1)字符型的变量需要在变量名后加上'$'符,比如:'cust_no$','name$';数值型变量就不需要,比如:'aum_m_avg'。
(2)日期型的变量,比如'birthday',需要加上相应的格式,比如:'birthday:yymmdd10.'和'format birthday yymmdd10.'。
(3)'@@'表示即时输入时不换行,SAS按照输入的顺序依次读取数据。
二、R语言
解决方案:
##在R中手动输入数据
cust_no <- c('1','2','3','4','5','6')
name<-c('LiMing','ZhangHongyi','WangSiming','ZhangCong','LiuYing','MaMingyue')
sex<-c('Male','Female','Male','Male','Female','Female')
is_marriage<-c('True','True','False','True','True','False')
##R语言中日期的默认输入格式为yyyy-mm-dd
birthday <- c('1984-05-31','1982-01-28','1983-08-06','1983-02-25','1988-09-20','1989-10-19')
##将日期的类型由字符型转化为date型
birthday <- as.Date(birthday)
aum_m_avg<- c(51428.06,5203.4,2148,110092.8,38004.5,11680)
##数据处理日期,由字符型转为date型
ods_date<- as.Date(rep('2017-03-31',6))
cust_base_info<- data.frame(cust_no,name,sex,is_marriage,birthday,aum_m_avg,ods_date)
##查看数据前6行
head(cust_base_info)
结果:
三、小结
手动输入数据,数值型变量最好处理,字符型变量加些格式,也好处理。难点在于日期的输入。
1、SAS中,需要在input时在变量后面加上特殊的日期格式,比如'ods_date:yymmdd10.'和'format ods_date yymmdd10.'。
2、R语言中,默认的输入格式是'yyyy-mm-dd',比如'1984-05-31'。输入完成后,因为它是字符型变量,需要将它用as.Date()函数转化为date型,例如birthday <- as.Date(birthday)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05