
大数据时代下的汽车消费与出行
汽车行业不断从传统行业转型发展,并且依靠大数据技术进行产业升级。无论是汽车销售还是售后服务,对于目前汽车行业所遇到的大部分问题,发展人工智能技术都是最佳的解决途径。
当今大数据技术大行其道,作为传统产业的汽车行业也努力依靠大数据实行自身的转型。汽车消费和售后服务,作为汽车行业重要的组成部分,目前正面临着重重考验。如何将人工智能运用于汽车消费和售后服务,满足人们更多地需求,是今后汽车行业发展的重中之重。
最近,我一直在思考智能汽车时代的服务问题,和多位行业专家交流之后,我突然顿悟了孙家栋院士曾经提出的一个观点:有了北斗提供的精准时间和空间信息,道路服务和交通管理问题都可以靠大数据技术“算”出来。无论是汽车销售还是售后服务,目前遇到的各种问题,最终都能够借助大数据技术或者人工智能技术得到解决。
对汽车消费和出行服务而言,绝大多数都是个性化消费,而大数据技术是个性化问题的专用工具。在汽车销售阶段,目前的互联网仍然停留在销售线索产生阶段,每年几个垂直门户网站给汽车厂商提供数亿条销售线索,最终形成几千万的销售,但这数亿条线索和几千万销售之间未必有因果关系。由于垂直和门户网站普遍采用程序控制广告位,搜索引擎相当于一个卖广告位的机器人。对主机厂和经销商而言,以往需要广告公司做的事情,一是拿出广告创意,二是给这些机器人做好人肉广告投放服务——显然,广告主需要一个买广告的机器人。
随着近年来在线广告程序化交易技术的普及,大量打着DSP名义的广告技(Pian)术(Zi)公司出现。由于传统广告公司并不真正拥有程序化交易技术,它们只能采购这些买广告机器人的专业服务,广告公司的人工服务,再加上这些DSP与在线广告交易市场(ADX)服务,基本上一半的广告费都被浪费在这些环节,真正用在媒体上的广告费用反而降低了。再加上国内盛行的各种流量作弊,尝试DSP的广告主基本没有成功案例。
我认为,广告的程序化交易是必然趋势,整个汽车行业的广告主自己控制采购广告的机器人是必然趋势,随着广告创意的个性化,广告创意机器人也必然会出现。一旦这类机器人出现,广告公司必然出局。未来汽车厂商将自己必将通过广告服务机器人来完成广告创意到投放的全流程服务。好消息是目前BAT只有卖广告的机器人,但还没训练出买广告的人工智能,所谓的DSP服务容易被广告主盖上骗子的烙印。
除了营销的大数据应用,汽车售后服务同样会深度应用大数据技术。包括有壹手在内的诸多创业公司在完成了终端和平台的信息化之后,接下来的研发重点必然是基于算法的各类专用工具,没有这些专用工具,现有的行业效率提升很难实现。
举个简单的例子,目前主要的汽车金融公司对于贷款用户风险的识别绝大多数都是完全基于评分卡的,但智能评分卡模型已经在很多国家广泛应用,但国内银行对于汽车消费信贷是挑用户的,由于风险较低,它们的风险管理技术相对落后。做次贷的很多汽车金融公司又不具备研发智能评分卡的能力。但毫无疑问,最终要判断用户贷前、贷中、贷后风险的,必然是借助机器学习甚至人工智能来实现。毕竟,车贷是完全个性化的产品,如果千人一面,要么因为惧怕风险丢掉客户,要么是忽视风险导致崩盘。最终要在业务和风险之间找到平衡,必然得靠人工智能的协助。
除了这些显而易见的应用,汽车经销商的门店运营同样需要人工智能的辅助运营,比如库存新车的管理,究竟应该库存什么车型?如何调整价格才能销售利益最大化?再比如库存配件的管理,究竟应该库存什么配件,应该如何调整配件价格才能销售收益最大化。这些原本都是靠人工根据经验甚至拍脑袋决定的事情,如果没有基于数据的人工智能来辅助决策,很难说有谁靠经验就能做好这些工作。
从我的切身体会看,几乎汽车售后市场的一切工作,最终的解决方案都指向人工智能。这证明了大数据技术对于个性化问题的终极解决能力。目前,国内绝大多数搞大数据的公司本质上都是卖数据的公司,真正踏实钻研机器学习、人工智能的公司,都还没有和合作伙伴找到特别好的商业模式,曙光在前方,但眼下得苟且的活下去。汽车售后是实体经济的一部分,不可能不受当前经济低迷的影响,但正因为大家日子都不好过,这才是技术革命最可能爆发的时候,欢迎更多致力于汽车大数据、人工智能的朋友同行!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01