京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下的汽车消费与出行
汽车行业不断从传统行业转型发展,并且依靠大数据技术进行产业升级。无论是汽车销售还是售后服务,对于目前汽车行业所遇到的大部分问题,发展人工智能技术都是最佳的解决途径。
当今大数据技术大行其道,作为传统产业的汽车行业也努力依靠大数据实行自身的转型。汽车消费和售后服务,作为汽车行业重要的组成部分,目前正面临着重重考验。如何将人工智能运用于汽车消费和售后服务,满足人们更多地需求,是今后汽车行业发展的重中之重。
最近,我一直在思考智能汽车时代的服务问题,和多位行业专家交流之后,我突然顿悟了孙家栋院士曾经提出的一个观点:有了北斗提供的精准时间和空间信息,道路服务和交通管理问题都可以靠大数据技术“算”出来。无论是汽车销售还是售后服务,目前遇到的各种问题,最终都能够借助大数据技术或者人工智能技术得到解决。
对汽车消费和出行服务而言,绝大多数都是个性化消费,而大数据技术是个性化问题的专用工具。在汽车销售阶段,目前的互联网仍然停留在销售线索产生阶段,每年几个垂直门户网站给汽车厂商提供数亿条销售线索,最终形成几千万的销售,但这数亿条线索和几千万销售之间未必有因果关系。由于垂直和门户网站普遍采用程序控制广告位,搜索引擎相当于一个卖广告位的机器人。对主机厂和经销商而言,以往需要广告公司做的事情,一是拿出广告创意,二是给这些机器人做好人肉广告投放服务——显然,广告主需要一个买广告的机器人。
随着近年来在线广告程序化交易技术的普及,大量打着DSP名义的广告技(Pian)术(Zi)公司出现。由于传统广告公司并不真正拥有程序化交易技术,它们只能采购这些买广告机器人的专业服务,广告公司的人工服务,再加上这些DSP与在线广告交易市场(ADX)服务,基本上一半的广告费都被浪费在这些环节,真正用在媒体上的广告费用反而降低了。再加上国内盛行的各种流量作弊,尝试DSP的广告主基本没有成功案例。
我认为,广告的程序化交易是必然趋势,整个汽车行业的广告主自己控制采购广告的机器人是必然趋势,随着广告创意的个性化,广告创意机器人也必然会出现。一旦这类机器人出现,广告公司必然出局。未来汽车厂商将自己必将通过广告服务机器人来完成广告创意到投放的全流程服务。好消息是目前BAT只有卖广告的机器人,但还没训练出买广告的人工智能,所谓的DSP服务容易被广告主盖上骗子的烙印。
除了营销的大数据应用,汽车售后服务同样会深度应用大数据技术。包括有壹手在内的诸多创业公司在完成了终端和平台的信息化之后,接下来的研发重点必然是基于算法的各类专用工具,没有这些专用工具,现有的行业效率提升很难实现。
举个简单的例子,目前主要的汽车金融公司对于贷款用户风险的识别绝大多数都是完全基于评分卡的,但智能评分卡模型已经在很多国家广泛应用,但国内银行对于汽车消费信贷是挑用户的,由于风险较低,它们的风险管理技术相对落后。做次贷的很多汽车金融公司又不具备研发智能评分卡的能力。但毫无疑问,最终要判断用户贷前、贷中、贷后风险的,必然是借助机器学习甚至人工智能来实现。毕竟,车贷是完全个性化的产品,如果千人一面,要么因为惧怕风险丢掉客户,要么是忽视风险导致崩盘。最终要在业务和风险之间找到平衡,必然得靠人工智能的协助。
除了这些显而易见的应用,汽车经销商的门店运营同样需要人工智能的辅助运营,比如库存新车的管理,究竟应该库存什么车型?如何调整价格才能销售利益最大化?再比如库存配件的管理,究竟应该库存什么配件,应该如何调整配件价格才能销售收益最大化。这些原本都是靠人工根据经验甚至拍脑袋决定的事情,如果没有基于数据的人工智能来辅助决策,很难说有谁靠经验就能做好这些工作。
从我的切身体会看,几乎汽车售后市场的一切工作,最终的解决方案都指向人工智能。这证明了大数据技术对于个性化问题的终极解决能力。目前,国内绝大多数搞大数据的公司本质上都是卖数据的公司,真正踏实钻研机器学习、人工智能的公司,都还没有和合作伙伴找到特别好的商业模式,曙光在前方,但眼下得苟且的活下去。汽车售后是实体经济的一部分,不可能不受当前经济低迷的影响,但正因为大家日子都不好过,这才是技术革命最可能爆发的时候,欢迎更多致力于汽车大数据、人工智能的朋友同行!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01