京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下的汽车消费与出行
汽车行业不断从传统行业转型发展,并且依靠大数据技术进行产业升级。无论是汽车销售还是售后服务,对于目前汽车行业所遇到的大部分问题,发展人工智能技术都是最佳的解决途径。
当今大数据技术大行其道,作为传统产业的汽车行业也努力依靠大数据实行自身的转型。汽车消费和售后服务,作为汽车行业重要的组成部分,目前正面临着重重考验。如何将人工智能运用于汽车消费和售后服务,满足人们更多地需求,是今后汽车行业发展的重中之重。
最近,我一直在思考智能汽车时代的服务问题,和多位行业专家交流之后,我突然顿悟了孙家栋院士曾经提出的一个观点:有了北斗提供的精准时间和空间信息,道路服务和交通管理问题都可以靠大数据技术“算”出来。无论是汽车销售还是售后服务,目前遇到的各种问题,最终都能够借助大数据技术或者人工智能技术得到解决。
对汽车消费和出行服务而言,绝大多数都是个性化消费,而大数据技术是个性化问题的专用工具。在汽车销售阶段,目前的互联网仍然停留在销售线索产生阶段,每年几个垂直门户网站给汽车厂商提供数亿条销售线索,最终形成几千万的销售,但这数亿条线索和几千万销售之间未必有因果关系。由于垂直和门户网站普遍采用程序控制广告位,搜索引擎相当于一个卖广告位的机器人。对主机厂和经销商而言,以往需要广告公司做的事情,一是拿出广告创意,二是给这些机器人做好人肉广告投放服务——显然,广告主需要一个买广告的机器人。
随着近年来在线广告程序化交易技术的普及,大量打着DSP名义的广告技(Pian)术(Zi)公司出现。由于传统广告公司并不真正拥有程序化交易技术,它们只能采购这些买广告机器人的专业服务,广告公司的人工服务,再加上这些DSP与在线广告交易市场(ADX)服务,基本上一半的广告费都被浪费在这些环节,真正用在媒体上的广告费用反而降低了。再加上国内盛行的各种流量作弊,尝试DSP的广告主基本没有成功案例。
我认为,广告的程序化交易是必然趋势,整个汽车行业的广告主自己控制采购广告的机器人是必然趋势,随着广告创意的个性化,广告创意机器人也必然会出现。一旦这类机器人出现,广告公司必然出局。未来汽车厂商将自己必将通过广告服务机器人来完成广告创意到投放的全流程服务。好消息是目前BAT只有卖广告的机器人,但还没训练出买广告的人工智能,所谓的DSP服务容易被广告主盖上骗子的烙印。
除了营销的大数据应用,汽车售后服务同样会深度应用大数据技术。包括有壹手在内的诸多创业公司在完成了终端和平台的信息化之后,接下来的研发重点必然是基于算法的各类专用工具,没有这些专用工具,现有的行业效率提升很难实现。
举个简单的例子,目前主要的汽车金融公司对于贷款用户风险的识别绝大多数都是完全基于评分卡的,但智能评分卡模型已经在很多国家广泛应用,但国内银行对于汽车消费信贷是挑用户的,由于风险较低,它们的风险管理技术相对落后。做次贷的很多汽车金融公司又不具备研发智能评分卡的能力。但毫无疑问,最终要判断用户贷前、贷中、贷后风险的,必然是借助机器学习甚至人工智能来实现。毕竟,车贷是完全个性化的产品,如果千人一面,要么因为惧怕风险丢掉客户,要么是忽视风险导致崩盘。最终要在业务和风险之间找到平衡,必然得靠人工智能的协助。
除了这些显而易见的应用,汽车经销商的门店运营同样需要人工智能的辅助运营,比如库存新车的管理,究竟应该库存什么车型?如何调整价格才能销售利益最大化?再比如库存配件的管理,究竟应该库存什么配件,应该如何调整配件价格才能销售收益最大化。这些原本都是靠人工根据经验甚至拍脑袋决定的事情,如果没有基于数据的人工智能来辅助决策,很难说有谁靠经验就能做好这些工作。
从我的切身体会看,几乎汽车售后市场的一切工作,最终的解决方案都指向人工智能。这证明了大数据技术对于个性化问题的终极解决能力。目前,国内绝大多数搞大数据的公司本质上都是卖数据的公司,真正踏实钻研机器学习、人工智能的公司,都还没有和合作伙伴找到特别好的商业模式,曙光在前方,但眼下得苟且的活下去。汽车售后是实体经济的一部分,不可能不受当前经济低迷的影响,但正因为大家日子都不好过,这才是技术革命最可能爆发的时候,欢迎更多致力于汽车大数据、人工智能的朋友同行!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22