京公网安备 11010802034615号
经营许可证编号:京B2-20210330
四种最常见的SEM数据分析方法,你用过几种
数据分析在SEM中是最为基础的技能,说得简单点,数据分析就是为了发现问题,并为解决问题提供数据参考。有经验的SEMer都知道,尽信数据则不如无数据。数据就躺在哪里,关键在分析之前,你之前要有清晰的思维逻辑:你为什么要分析数据?你希望通过数据分析得到什么?我一般的分析数据逻辑如下:
确定分析的目的—>收集数据—>整理数据—>分析数据—>得到一些分析的思路
今天主要分享下数据分析的常用方法,主要四种:
1、趋势分析方法
2、比重分析方法
3、TOP N分析法/二八原则
4、四象限分析方法。
这也是从接手一个项目到具体的优化措施的数据分析逻辑。老规矩,能用图片说明的就不用文字。
趋势分析法又叫比较分析方法,水平分析方法,主要通过数据连续的相同指标或比率进行定基对比或环比对比,得出他们的变动方向,数额,幅度,来感知整体的趋势。
这种方法粗略而简单,体现的是一个行业的总体趋势。
主要有分析纬度:有时段趋势、逐日趋势、逐周趋势、逐月趋势、逐季节趋势……这个分析法比较简单,一般通过百度指数、百度统计就能掌握这些趋势。重点是根据自己行业,针对不同时间的趋势进行广告策略调整。看几个图片带过:
指相同事物进行归纳分成若干项目,计算各组成部分在总数中所占的比重,分析部分与总数比例关系的一种方法。
在SEM中的应用
有利于帮助SEMer快速掌握企业的核心推广业务、主要推广渠道、主要推广地域等主要贡献者。
从上图中可以看出来,这个账户消费最大的是通用词,其次是品牌词,各占40%左右,而收益最大的是品牌词,占了总体收益的89%,消费更多的通用词收益仅有11%。那么此时应该着重推广哪类词,不言而喻。
TOP N分析法指基于数据的前N名汇总,与其余汇总数据进行对比,从而得到最主要的数据所占的比例和数据效果。
在SEM中的应用
1)类似二八原则,找到消费/效果占比80%的数据,有效帮助定位问题,不然过多的数据把问题复杂化 ;
2)定位出需要持续关注消费或转化的那些重要关键词。
四象限分析法:也叫矩阵分析方法,是指利用两个参考指标,把数据切割为四个小块,从而把杂乱无章的数据切割成四个部分,然后针对每一个小块的数据进行针对化的分析。
四象限在SEM优化中的具体应用:
以上就是SEM数据分析的四种基本方法,掌握了这四种思维方式,再配以娴熟的EXCEL技巧,定会让你的SEM优化工作事半功倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05