
人工智能结合医疗大数据触发产业变革
不同于传统的劳动密集型医疗,新兴的人工智能医疗模式是知识驱动和数据密集的。因此,未来将会有众多的新的医疗服务模式依赖于新一代用户友好、实时大数据分析的人工智能工具。
人工智能+大数据触发产业变革智能医疗蓝海正蓝
机器人只是人工智能的冰山一角,机器学习、神经网络、自然语音、图像识别等这些对于普通人来说生疏而又不具吸引力的技术,才是人工智能这座“冰山”的支柱。纵然人工智能领域的技术数量庞大、迭代迅速,但有两项核心基础却从不曾改,它们就是数据和算法。海量的数据是支持人工智能生成的来源,而优质的算法是确保人工智能进化的保障。
智能医疗是人工智能的下一个蓝海
“AI+”有多种可能性,为何偏说智能医疗是AI的下一个蓝海呢?主要还是基于两个因素的考虑:
首先就是巨头的入局以及投资者的目光走向。加上微软,目前已有4家科技巨头进入智能医疗,其余三家分别为谷歌、IBM和苹果。随着这些担当“行业风向标”的科技巨头的纷纷加入,哪怕项目再冷门,一直跟在他们身后的行业追随者们也会将目光投放在该领域。
其次就是基础技术、设施的逐渐完善。作为“云”的两项最基本服务,“云储存与云计算”的性能已发展的相当成熟,而共享服务更是在医院与医院、医生与患者之间搭建了一个平台,通过数据分享让患者的诊断更为全面。此外,随着语音识别、图像识别等技术的逐渐提升,作为搜集相关数据的智能手环、可实时规划最佳行驶路线的智能汽车等医疗附属硬件设施也在走向成熟(落地),进而推动了整个智能医疗产业链的成熟。
当产业链成熟,也就意味着这个领域是可以发展起来的,加上医疗行业的重要性以及AI技术的先进,智能医疗必将成为一个重点“AI+”领域。
五个方向触发医疗变革
人工智能在医疗健康领域有巨大的潜力,除了我们较熟悉的提升癌症治疗与诊断水平以外,人工智能还可以应用于众多的医疗场景:如胎儿监护、败血症早期发现、组合药物风险识别以及再住院的预测等等。不同于传统的劳动密集型医疗,新兴的人工智能医疗模式是知识驱动和数据密集的。因此,未来将会有众多的新的医疗服务模式依赖于新一代用户友好、实时大数据分析的人工智能工具。
未来人工智能/机器学习的工具和技术的应用,将在以下5个医疗领域中带来造福人类的变革:
人口管理:识别风险,判别病人是否处于风险中,并对可能降低风险的措施进行识别。
护理管理:为每个患者设计个性化的护理计划,缩小在护理中的差距。
患者自我管理:支持并能够为患者个人定制自我管理治疗计划,实时监视患者健康,调整药物剂量,并为有利健康的行为改变提供激励机制。
系统设计:优化医疗流程——从基本的治疗过程到医疗保险的一切,通过缜密的数据分析,在提高护理成果和质量的同时,降低成本。
决策支持:帮助医生和患者基于最新的测试或监控数据,选择合适的药物剂量,协助放射医师识别肿瘤等疾病,分析医学文献以及建议将产生最好结果的手术方案。
在这五个医疗领域应用人工智能/机器学习策略,对于创建大规模、高性价比、个性化、以病人为中心的医疗临床系统是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26