京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言答疑:txt文件无法被R正确读入
R语言中,txt无法正确的读入的可能性有很多种。有位网友提供的一个无法正确读入的文本文件,使用记事本打开,看起来一切正确(见图片)。
但读入的时候,报错如下。
>read.table("1.txt")
Error intype.convert(data[], as.is = as.is, dec = dec, numerals = numerals, :
'<ff><fe><67>'多字节字符串有错
此外,Warning messages:
Inread.table("1.txt") : line 1 appears to contain embedded nulls
Inread.table("1.txt") : line 2 appears to contain embedded nulls
Inread.table("1.txt") : line 3 appears to contain embedded nulls
Inread.table("1.txt") : line 4 appears to contain embedded nulls
Inread.table("1.txt") : line 5 appears to contain embedded nulls
Inscan(file = file, what = what, sep = sep, quote = quote, dec = dec,:embedded nul(s) found in input
问题解决
报错提示,文本中包含嵌入的null符号,所以无法正确读取。那么为什么使用记事本打开却一切正常呢?我们试试使用专业的文本编辑器VIM(如果有问题,可以百度VIM)打开(见图片,原文件-VIM)。
注意了,与记事本看起来多了很多符号。因为在记事本下,文本中的很多异常符号是显示不出来的。
符号解释
^@:代表“NULL”符号,本身代表空白,所以在记事本下不显示。
^M: 其实代表window下的回车符。
以上两个符号需要被删除的,否者R可能出现读取错误。
解决方法
1)
将1.txt使用记事本打开,然后复制到excel里。接着将excel里的文本在复制一遍,粘贴到一个新建的txt文件 2.txt里面。再次使用VIM打开,看起来就一切正常了(见图片 修改后-VIM)。
然后,R就可以正常读入了。
2)
在VIM下,将异常符号替换去除。如果熟悉使用VIM的同学,可以使用以下两个命令替换异常符号:
%s/\r//g #备注:替换掉^M
%s/^@//g #备注:替换掉^@, ^@不能直接输入,否者会报错。正确的方法是Shift + Ctrl + 2 来输入^@
另外在R最新版本 3.2.3 的read.table命令 多了一个选项:skipNUL。如果skipNul=TRUE可以自动忽略文件中的NULL符号。不过在这个例子中,由于异常符号^M的存在,即使使用skipNul=TRUE依然是会报错的。需要将^M手动替换去除。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23