京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的类别以及制造商和服务提供商所追求的机会
物联网最显著的效益,就是它能极大地扩展我们监控并测量真实世界中发生的事情的能力。工厂经理知道,如果发动机发出呜呜声,就表示出现了问题;一个有经验的房东会知道,烘干机的通风系统可能会被线头塞住,而导致安全隐忧。数据系统最终给予了我们精确了解这些问题的能力。
大数据是当下最热门的科技关键词,但大家对它的认知与定义非常模糊。
然而,挑战在于使这些让信息更有价值的系统,以及不断发展其商业模式。想一下智能恒温器在峰值功率很吃紧的情况下,公用事业单位和第三方能源服务企业想要每分钟准确更新能源消耗情况,通过精确调整能源并最大化节省能源,使得夏季一般日子和节电日能够有明显的区别。但如果把时间缩短到午夜至凌晨四点间,对信息的需求就不是那么急迫了:数据主要在确定长期趋势时才能有价值。
现在从消费者的角度思考。15分钟的数据更新间隔,都有可能导致超负荷。这不仅仅没有价值,还可能会造成贬低它价值的状况。相反,消费者所需要的,不过是一份能够指明一些指数趋势的月报表。
我经常跟人们讨论关于“数据价值”的挑战。下面的列表总结了大数据的一般类别,以及制造商和服务提供商所追求的机会。
五种大数据类型
状态数据
冷冻库中的压缩机是否正常运作?是否有一个已经停止运作了?不用担心,状态资料可以提供供货商和消费者关于物联网的实时动态数据。
状态数据是物联网数据中最普遍、最基础的一种。事实上所有事都会产生类似的数据,并把它作为基础。在许多市场中,状态数据更多地被用作进行更复杂分析的原材料,但它也具有它自身的重要价值。
看看Streetline是怎样找到停车位的。它创造了能够提醒订阅者空余车位的系统。当然,长期的数据能帮助城市规划者,但对于消费者来说,实时状态数据才是最重要的。
定位资料
我的货物到哪儿了?到达目的地了吗?定位服务是GPS应用的必然趋势。GPS非常强大,但在室内、人潮拥挤的地方、以及快速变化的环境中,效果并不明显。那些试图追踪搬运车以及堆高机的人,可能会需要实时的信息。
作为早期的物联网市场,农业领域也需要充分利用位置数据,因为农场主通常需要在很大的地理面积上定位自己的设备。我们已经看到了一些能够帮助人们定位钥匙的消费品出现,这意味着在为商业和工业用户提供服务的领域,存在着更大的市场;尤其是在时间紧迫,或是有大量的资产需要追踪的情况下。Foursquare针对油漆仓库的发展,就是抓住了这样一个巨大的商机。
个性化资料
不要用个人资料的安全性来拒绝个性化数据,个性化数据指的是匿名的个人偏好资料。消费者自然会对自动化产生怀疑,因为比起你的舒适,一些住宅管理系统更关心节省的成本,所以往往会让你困在一个昏暗的办公室者冰冷的饭店客房之中。自动化技术同样也存在安全隐忧。
尽管如此,自动化也是不可避免的。没有人会为了节省几块美元,而不停地用手指来试恒温器的温度。同样,那些依靠手动控制的照明系统也失败了(一些智慧照明生产者希望用他们的传感器数据告诉商店管理者,何时应该打开结账通道)。挑战将围绕开发应用程序和产品规则而展开。
可供行为参考的数据
把这个看作是有后续计划的状态。建筑物耗了整个国家电力的73%,并且其中一大部分(根据EPA显示,最高达到30%)被浪费了。为什么呢?因为对于大多数建筑物的所有者来说:能源是次要的问题。他们虽也想解决这一问题,但担心成本、精力以及一些棘手的局面所产生的损失,将会超出收益。
对于这一问题相应地产生了两种方法:能够改变系统实时状态的自动化技术、能够使人们改变行为习惯或者做长线投资的说服力。Opower开创了关于说服力的解决方案,也就是提供用户及其邻里之间使用能源的对比数据。根据他们自己的研究,这些具有说服力的数据能,使能耗降低2到3个百分点。
用户回馈数据
你了解你的顾客的真实想法吗?你也许认为你了解,但是你可能错了。在不久的将来,生产者还能分析从已售出的产品中获取的数据,从而更加了解产品在现实世界中的使用情况。现在大部分公司并不太了解他们产品的使用状况。这些产品从经销商处装运,从零售商处销售,最后进入了千家万户。而使用者和生产者可能永远都不会有交集。
物联网创造了一个从消费者到生产者的回馈机制,在这里产品生产者可以在保有适度隐私、安全以及抽样来检验产品的实际表现,并鼓励持续的产品改进和创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08