京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS编程中的这些小问题你遇到过吗
在用SAS编程时,总是时不时会遇到各种各样的小问题,我本人也遇到过一些有意思的问题,在写程序的过程中,为了避免这些小问题也慢慢的积累了一些经验,那么通过这一节分享给大家吧,希望会给各位童鞋带来一些帮助!
问题一
WARNING: The quoted string currently being processed has become more than 262 bytes long. You might have unbalanced quotation marks.
上述问题一般出现在这种情况下:
data tmp;
do i = 1 to 100;
var = 'var'||left(i);
output;
end;
run;
proc sql;
select var into : varlist separated by ' '
from tmp;
quit;
data _null_;
var = scan("&varlist.",1,' ');
put var =;
run;
当我需要对某一个变量的所有行值生成一个宏变量的时候,就会通过如上的方式进行编程,那么通过scan函数进行拆解时,就会得到上述这种警告。从上述警告可以看到是因为字符超过了262个字节。尽管没有报错,但是出于编程的完美运行角度看,有些童鞋可能就受不了了。
那么我们可以通过添加一行代码来解决这个问题:
options noquotelenmax;
问题二
WARNING: 没有解析符号引用 VARLIST。
这种警告应该会很常见,那么我所指的问题并不是通常我们所说的宏变量未生成的情况,而是在有条件的生成宏变量的情况下合理的未生成宏变量的结果,如下所示:
proc sql;
select distinct age into : agelist separated by ' '
from sashelp.class
where age > 16;
quit;
%put agelist = &agelist.;
上述代码表示将满足条件的age不重复的通过空格分隔符生成宏变量agelist,但是很显然数据集中的age并不满足这个条件,因此会出现上述所谓的警告,那么为了避免这个问题,我们可以在程序的最前面对宏变量进行声明,可以是局部的,也可以是全局的,视具体情况而定,这样我们就可以得到一个初始化的值为空的宏变量。
在这里,我们对其进行全局的声明:
%global agelist;
问题三
WARNING: 没有解析宏 CI 的调用。
在统计报告的报表里,通常在第一列的某一行会出现一个标签“%95CI”,而为了让这个标签出现,我们通常习惯用下列语句:
proc sql;
create table tmp as
select '('||compress(lower)||','||compress(upper)||')' as confidence label = "95%CI"
from dataset;
quit;
通过上述类似这种语句我们就可以得到对应的95%CI,那么为了避免%被误认为宏的调用,我们可以采用两种办法:
一:label = '95%CI'
二:label = %nrstr("95%CI")
问题四
这个问题来自论坛,涉及到anydtdte的格式默认长度问题,很有意思,特意贴出来。
程序如下所示:
data a;
input date $ 1-51;
cards;
2012-01-19T11:30
2011-12-22T11:15
2012-03-08T08:15
;
run;
data b;
set a;
date1=scan(date,1,'T');
date2=input(date,anydtdte.);
format date2 date9.;
run;
最终的结果如下所示:
上述结果有两处问题:
第一:date2的结果与date1的日期结果对不上,例如第二列为2012年1月19日,到了第三列变成了2012年1月1日;
第二:第三列date2的最后一行结果为缺失。
那么问题的关键在在哪呢,从上述代码我们可以看到编程做日期转换的过程中采用anydtdte格式来进行转化,这个思路并没有错,那么错在什么地方呢?
首先给出SAS HELP的语法:
从上述编程可看到,这么童鞋在采用anydtdte格式进行转化时并没有设定字符长度,而是采用了anydtdte默认读取的长度值9,因此在读取date1字符串时,就变成了只读取前9位,因而出现日期对不上,到了最后一行更是因为第九位数字为0而没有此日期因此无法转化从而出现缺失的情况。
那么纠正这个错误想必各位童鞋都应该了解了,只需要在anydtdte后面加个数字10就完美的解决了这个问题了。
date2=input(date,anydtdte10.);
问题五
%abort 和 %return
关于这两个宏语句,作用都差不多,都是为了中断程序的运行,只是轻重程度不一样,这一点需要谨记:
%abort直接结束SAS进程。也就是说你的SAS在执行完这个语句之后,你的SAS会被立即关闭,甚至都来不及保存,因此运行这个语句需要慎重考虑。
%return 中断你当前运行的宏。
对于%return举个简单的例子:
%macro checkit(error);
%if &error = 1 %then %do;
%put 程序中断,请修正参数;
%return;
%end;
%else%put 继续进行;
%mend checkit;
上述编程表示当输入的error = 1 时,日志会输出“程序中断,请修正参数”,同时宏被中断;当输入的error = 其他值时,日志会输出“继续进行”。
问题六
为了凑成六六大顺,再写一个今天某位童鞋遇到的一个问题吧。
问题是这样的:
一个数据集的一个变量假定为var,var的值为1 1 2 2 2 3 . . 5。可以看到有2个1,3个2,2个缺失,一个5。那么这位童鞋想通过程序统计var为2的个数,于是写出了如下代码:
proc sql;
select count(var = 2) as varcnt
from tmp;
quit;
这位童鞋可能有点不太明白sum函数和count函数在遇到逻辑比较运算的时候的区别。
首先我说一下count函数吧。
Count函数一般在sql中有两种写法,一种是count(*),这个表示对数据集行数的统计,如果加了group by,那就是分组的行数统计;一种是count(variable),这个是表示对某一个变量的非缺失行数的统计,加了group by 那也是同理;如果加了逻辑比较运算的话,像count(expression),跟count(*)基本上没啥区别,当然前提是这个运算不是简单的数值运算,我们知道数值运算中缺失值加任何值都是缺失,除非采用计算函数。
以上述数据为例:
data tmp;
input var @@;
cards;
1 1 2 2 2 . . 5
;
run;
proc sql;
select count(var) from tmp;
select count(*) from tmp;
select count(var = 1) from tmp;
quit;
最终得到的结果是:第一行为6,第二行为8,第三行为8。第三行中var = 1最终的结果要么是0,要么是1,因为非缺失的var的值 = 1肯定要么是0要么是1,而缺失的var值 = 1 的结果肯定是0,因此都是非缺失的,因此其实跟第一种写法意义一样。数据分析师培训
而sum函数则一般在sql中有两种写法:一种是sum(variable),这个表示对variable每行值的累加,不考虑缺失值;一种是sum(expression),那么就是对expression的结果进行累加,如果expression = 1 ,那么就是加1,如果expression = 0,那么就是加0。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20