
深度剖析大数据在工业4.0智能工厂中的应用
大数据正以一种革命风暴的姿态闯入人们视野,其技术和市场在快速发展,而驾驭大数据的呼声则一浪高过一浪。于是有人说中国大数据产业有炒作“过热”之嫌,也有人认为大数据投资正当时。随着近些年国家工业信息化进程脚步的不断加快,以及国际社会在工业现代化、工业4.0等方面的不断演进,使得大数据技术在工业行业以及制造业方面也进行了比较深度的技术融合和应用融合,我们就来聊聊在上述领域的大数据应用。
近年来出现的人力短缺、工资上涨、产品交付期短和市场需求变动大等问题,使得制造业正面临新一波转型挑战。如何在控制生产成本的同时,还能提高生产力与效率,则是转型的主要目的。在这样的背景下,德国、美国等制造业发达国家无不积极推动“工业4.0”。
“工业4.0”本质上是通过信息物理系统实现工厂的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。大数据的作用不仅局限于此,它可以渗透到制造业的各个环节发挥作用,如产品设计、原料采购、产品制造、仓储运输、订单处理、批发经营和终端零售。
大数据改善订单处理方式
我们都知道,大数据技术不管是在哪个行业当中进行应用,其最为根本的优势就是预测能力,用户利用大数据的预测能力可以精准的了解市场发展趋势,用户需求以及行业走向等多方面的数据,从而为用户自身企业的发展制定更适合的战略和规划。企业通过大数据的预测结果,便可以得到潜在订单的数量,然后直接进入产品的设计和制造以及后续环节。
也就是说,企业可以通过大数据技术,在客户下单之前进行订单处理。而传统企业通过市场调研与分析,得到粗略的客户需求量,然后开始生产加工产品,等到客户下单后,才开始订单处理。这大大延长了产品的生产周期。现在已经有很多制造业行业的企业用户开始利用大数据技术来对销售数据进行大数据分析,这对于提升企业利润方面是非常有利的。
大数据击败传统仓储运输
由于大数据能够精准预测出个体消费者的需求以及消费者对于产品价格的期望值,企业在产品设计制造之后,可直接派送到消费者手中。虽然此时消费者还没有下单,但是消费者最终接受产品是一个大概率事件。这使得企业不存在库存过剩的问题,也就没有必要进行仓储运输和批发经营。
工业采购变得更加精准
大数据技术可以从数据分析中获得知识并推测趋势,可以对企业的原料采购的供求信息进行更大范围的归并、匹配,效率更高。大数据通过高度整合的方式,将相对独立的企业各部门信息汇集起来,打破了原有的信息壁垒,实现了集约化管理。
用户可以根据流程当中每一个环节的轻重缓急来更加科学的安排企业的费用支出,同时,利用大数据的海量存储还可以对采购的原料的附带属性进行更加精细化的描述与标准认证,通过分类标签与关联分析,可以更好地评估企业采购资金的支出效果。
大数据让产品设计更优化
借助大数据技术,人们可以对原物料的品质进行监控,发现潜在问题立即做出预警,以便能及早解决问题从而维持产品品质,大数据技术还能监控并预测加工设备未来的故障几率,以便让工程师即时执行最适决策。大数据技术还能应用于精准预测零件的生命周期,在需要更换的最佳时机提出建议,帮助制造业者达到品质成本双赢。
比如日本的Honda汽车公司就将大数据分析技术应用在了电动车的电池上,由于电动车不像汽车或油电混合车一样,可以使用汽油作为动力来源,其唯一的动力就是电池,所以Honda希望进一步了解电池在什么情况下,绩效表现最好、使用寿命最长。Honda公司通过大数据技术,可以搜集并分析车辆在行驶中的一些资讯,如:道路状况、车主的开车行为、开车时的环境状态等,这些资讯一方面可以帮助汽车制造公司预测电池目前的寿命还剩下多长,以便即时提醒车主做更换,一方面也可以提供给研发部门,做为未来设计电池的参考。
大数据让终端零售畅通无阻
对于一家企业来说,供应链方面的业务需求也是整体运作当中非常重要的一环,在零售行业当中的一些企业也将大数据技术融入了进来,沃尔玛的零售链平台提供的大数据工具,将每家店的卖货和库存情况大数据成果向各公司相关部门和每个供应商定期分享。供应商可以实现提前自动补货,这不仅减少门店断货的现象,而且大规模减少了沃尔玛整体供应链的总库存水平,提高了整个供应链条和零售生态系统的投入回报率,创造了非常好的商业价值。
对于工业制造业来说,由于自身在技术创新性等方面的特殊需求,对于大数据技术的需求改变是非常庞大的,这就需要在实际应用过程当中将海量数据变得能够真正被实际应用所用,那么大数据在工业领域和制造业领域等方面也就能起到非常重要的意义了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09