
两种SAS代码实现变量的缺失值频数及占比
sas对缺失值的统计,可得出缺失值的频数及占比。以下为详细程序代码:
/*首先是创建示例数据集*/
data tmp;
infile datalines delimiter=",";
length var1 $8.;
length var2 8.;
length var3 $8.;
length var4 8.;
input var1 $ var2 var3 $ var4
@@;
datalines;
A,1,B,2.,3,C,.C,.,.,3
;
run;
如图得到下列数据集
然后统计数据集中缺失值和占比,先为字符型和数值型先分别设定一个format,然后直接对变量进行频数统计,再做一下简单处理,就可得到理想结果。
代码如下
proc format;
value num_f . = "0"
low-high = "1" ;
value $char_f " " = "0"
other = "1" ;
run;
/*频数统计*/
ods output onewayfreqs=tables;
proc freq data= tmp ;
tables _all_ / missing;
format _numeric_ num_f. _character_ $char_f.;
run;
ods output close;
数据集如下:
/*保留缺失变量、频数和占比*/
data miss;
length variable $50;
set tables;
variable = scan(Table,2,"“"); /*获取变量名*/
/*由于变量都是F_开头,因此可以用F_:来包含所有变量*/
value = max(of F_:);
if value = 0; /*缺失标志*/
keep variable frequency percent;
label variable = "缺失变量名" frequency = "缺失频数" percent = %nrstr("%缺失占比");
run;
以上为第一种方法;
下面用数组的方法进行实现。
/*找出缺失变量*/
data tmp11;
set tmp;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
length variable $50;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
variable =vname(arr1(i)); /*数值型缺失*/
output;
end;
end;
do j = 1to dim(arr2);
if missing(arr2(j)) then do;
variable = vname(arr2(j)); /*字符型缺失*/
output;
end;
end;
keep variable;
run;
/*统计缺失频数和占比*/
proc sql noprint;
select count(*) into : N from tmp;
create table miss as
select variable label = "缺失变量名",count(*) as frequency label = "缺失频数",
input(compress(put(calculated frequency / &N.,percent10.2),"%"),best32.) as percent label = %nrstr("%缺失占比")
from tmp11
group by variable;
quit;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29