
SAS信用评分之逻辑回归的变量选择
关于woe的转化,这一部在之前的这篇文章:sas批量输出变量woe值中已经写了,woe也只是简单的公式转化而已,所以在这系列中就不细究了哈。这次的文章我想来讲逻辑回归。你会说逻辑回归就是三个方法:backword stepword forward有什么好讲的。如果你这么说,你的模型就只能停留在机器给你什么结果就是什么结果,那就low了哈。
为什么这么说呢?是因为我发现譬如你输入了300个变量,你设定了sle和sls的显著性水平都是0.05,那么只要是满足“sle和sls的显著性水平都是0.05”的变量就会被筛选出来,这时候就有问题,输入的300个变量中,至少有30个变量是满足上面的显著性水平的条件的,那么你这30个变量难道都要用的模型中吗?
你说可以,你领导都会跟你说不可以,会过拟合,过拟合意味着什么,评分卡在AB两级的客户极少(因为需要满足的条件多),在cde级的客户很多,加入以前100个人来申请,是30个人可以通过的,但是现在你做了模型100个人中只有10个人能通过,那这10个人肯定好的啊。这样子逾期率是降低了,但是批核率也降低了,通过的人少了,老板就问你,你这是让公司怎么赚钱!!!。
那么这时候我们应该做什么,就是精减变量,让只用十几个变量达到30个变量的效果,当然这种30个变量的效果可能很好,但是我们尽量是做到用十几个变量达到30个变量的效果啦。譬如,30个变量达到的ks值是0.326,那么你13个变量可以达到0.316,那也足够拉。
那么现在先贴一个单独的proc logistic 过程。
Ods Output ParameterEstimates=aa ;
proc logistic data=test.RONG_ZX_total12_3 outest=bb ;
model APPL_STATUS_1(event="0")=
woe_N_a_nine_rate
woe_N_t_CREDIT_f
woe_N_ACCOUNT_CREDITCARD
woe_N_q_othree_cnt
woe_N_q_tlttwelve_cnt
woe_N_cq_cc_rate
woe_N_OPERATOR_num_S
woe_N_CREDOO_SCORE_o
woe_N_CALL_PAY_mrate
woe_n_g_MARITAL_P
woe_n_NAME_CITY
woe_n_industry_o
woe_n_EDUCATION
/selection=s sle=0.05 sls=0.05;
output out=pp
p=pred_status lower=pi_l upper=pi_u;
run;
proc npar1way data=pp noprint;
class APPL_STATUS_1;
var pred_status;
output out=ks_1(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
这是我在建模中的一个例子。后面的proc npar1way是计算ks值的。
这里是我随便选了13个变量出来,然后跑了一下ks值,但是这里有个问题就是那我怎么知道这30个变量中到底哪13个,难道我要一直试嘛,这样子很浪费我的时间也。所以我一早上就在纠结这个问题,但是我又百度不到sas中怎么实现C2013随机数的产生。所以我在纠结中就想出以下这种方法,不过要是哪位大神指导C2013 怎么实现还是希望留言区指导,我可以继续学习。
那么接下来就贴下我的代码吧,代码就是以ks为衡量指标,希望找出一种组合的ks是比较高的。
%macro var_namelist(data=,coltype=,tarvar=,dsor=);
%let lib=%upcase(%scan(&data.,1,'.'));
%let dname=%upcase(%scan(&data.,2,'.'));
%global var_list var_num;
proc sql ;
create table &dsor. as
select name
from sashelp.VCOLUMN
where left(libname)="&lib." and left(memname)="&dname." and type="&coltype." and lowcase(name)^=lowcase("&tarvar.") ;
quit;
%mend;
%macro pub_survey(data,dvar,n,start,end,by);
proc datasets lib=work;
delete result_1;
run;
%do i=&start. %to &end. %by &by.;
%var_namelist(data=&data.,coltype=num,tarvar=&dvar.,dsor=aa);
proc surveyselect data=aa
out=bb
method =srs
n=&n.
seed =&i.;
run;
data _null_;
set bb;
call symput (compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%put &var1.;
Ods Output ParameterEstimates=gg ;
proc logistic data=&data. outest=bb ;
model &Dvar. (event="0")=
&var1. &var2. &var3. &var4. &var5. &var6. &var7. &var8. &var9. &var10. &var11.
&var12. &var13.
/selection=s sle=0.05 sls=0.05;
output out=pp
p=pred_status lower=pi_l upper=pi_u;
run;
proc npar1way data=pp noprint;
class &Dvar.;
var pred_status;
output out=ks_1(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data result;
set ks_1(keep=ks);
length value $500.;
value=compress("&var1."||","||"&var2."||","||"&var3."||","||"&var4."||","||"&var5."||","||"&var6."||","||"&var7."||","||"&var8."||","||"&var9."||","||"&var10."||","||"&var11."||","||"&var12."||","||"&var13.");
run;
Proc append base=result_1 data=result force;run;
%end ;
proc sort data=result_1;by ks;
run;
%mend;
老样子啦,说下这宏怎么用。宏都是我调试过,应该没错,就是你的原数据集,要只留下你要用来循环的变量以及因变量,别的你都不要哈,乖,听我话。
Data:填入的是原数据集;
Dvar:填入因变量
N:填入你想最终模型的个数,建议10-15个吧。
Start:这里填的是seed种子数,次种子出不来.avi哈。建议是4位数以上,不知道sas随机过程中seed的种子数的自行百度。
End:你要种子循环的尽头。尽量设大点,我是建议循环个1000 2000次最好啦。
By:种子循环的区间,就是你是每隔200个数取一个数还是20个数之间取一个数。譬如你设定start=1000,end=1500,by=100,那就是种子等于1000,1100,1200,1300,1400,1500这五个数。再强调一次,输入数据集值保留你要这筛选的变量以及因变量,其余的主键什么的,你别加进去哈。
好的,这时候我要上结果图了:
这就是结果图。Ks升序排序,可以看到我循环了三次,最好的是第三次,帅选的13个变量里面,ks可以达到0.301,变量value中就是达到ks值的13个变量。但这只是我循环三次的结果啦。我是建议最好循环个1000次2000次。你就下班的时候放着跑,明天上班来收成果就好了,上班时间盯着屏幕。是跑不完的。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09