
python—时间与时间戳之间的转换
对于时间数据,如2016-05-05 20:28:54,有时需要与时间戳进行相互的运算,此时就需要对两种形式进行转换,在Python中,转换时需要用到time模块,具体的操作有如下的几种:
将时间转换为时间戳
重新格式化时间
时间戳转换为时间
获取当前时间及将其转换成时间戳
1、将时间转换成时间戳
将如上的时间2016-05-05 20:28:54转换成时间戳,具体的操作过程为:
利用strptime()函数将时间转换成时间数组
利用mktime()函数将时间数组转换成时间戳
#coding:UTF-8
import time
dt = "2016-05-05 20:28:54"
#转换成时间数组
timeArray = time.strptime(dt, "%Y-%m-%d %H:%M:%S")
#转换成时间戳
timestamp = time.mktime(timeArray)
print timestamp
2、重新格式化时间
重新格式化时间需要以下的两个步骤:
利用strptime()函数将时间转换成时间数组
利用strftime()函数重新格式化时间
#coding:UTF-8
import time
dt = "2016-05-05 20:28:54"
#转换成时间数组
timeArray = time.strptime(dt, "%Y-%m-%d %H:%M:%S")
#转换成新的时间格式(20160505-20:28:54)
dt_new = time.strftime("%Y%m%d-%H:%M:%S",timeArray)
print dt_new
3、将时间戳转换成时间
在时间戳转换成时间中,首先需要将时间戳转换成localtime,再转换成时间的具体格式:
利用localtime()函数将时间戳转化成localtime的格式
利用strftime()函数重新格式化时间
#coding:UTF-8
import time
timestamp = 1462451334
#转换成localtime
time_local = time.localtime(timestamp)
#转换成新的时间格式(2016-05-05 20:28:54)
dt = time.strftime("%Y-%m-%d %H:%M:%S",time_local)
print dt
4、按指定的格式获取当前时间
利用time()获取当前时间,再利用localtime()函数转换为localtime,最后利用strftime()函数重新格式化时间。
#coding:UTF-8
import time
#获取当前时间
time_now = int(time.time())
#转换成localtime
time_local = time.localtime(time_now)
#转换成新的时间格式(2016-05-09 18:59:20)
dt = time.strftime("%Y-%m-%d %H:%M:%S",time_local)
数据分析师培训
print dt
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30