
python—时间与时间戳之间的转换
对于时间数据,如2016-05-05 20:28:54,有时需要与时间戳进行相互的运算,此时就需要对两种形式进行转换,在Python中,转换时需要用到time模块,具体的操作有如下的几种:
将时间转换为时间戳
重新格式化时间
时间戳转换为时间
获取当前时间及将其转换成时间戳
1、将时间转换成时间戳
将如上的时间2016-05-05 20:28:54转换成时间戳,具体的操作过程为:
利用strptime()函数将时间转换成时间数组
利用mktime()函数将时间数组转换成时间戳
#coding:UTF-8
import time
dt = "2016-05-05 20:28:54"
#转换成时间数组
timeArray = time.strptime(dt, "%Y-%m-%d %H:%M:%S")
#转换成时间戳
timestamp = time.mktime(timeArray)
print timestamp
2、重新格式化时间
重新格式化时间需要以下的两个步骤:
利用strptime()函数将时间转换成时间数组
利用strftime()函数重新格式化时间
#coding:UTF-8
import time
dt = "2016-05-05 20:28:54"
#转换成时间数组
timeArray = time.strptime(dt, "%Y-%m-%d %H:%M:%S")
#转换成新的时间格式(20160505-20:28:54)
dt_new = time.strftime("%Y%m%d-%H:%M:%S",timeArray)
print dt_new
3、将时间戳转换成时间
在时间戳转换成时间中,首先需要将时间戳转换成localtime,再转换成时间的具体格式:
利用localtime()函数将时间戳转化成localtime的格式
利用strftime()函数重新格式化时间
#coding:UTF-8
import time
timestamp = 1462451334
#转换成localtime
time_local = time.localtime(timestamp)
#转换成新的时间格式(2016-05-05 20:28:54)
dt = time.strftime("%Y-%m-%d %H:%M:%S",time_local)
print dt
4、按指定的格式获取当前时间
利用time()获取当前时间,再利用localtime()函数转换为localtime,最后利用strftime()函数重新格式化时间。
#coding:UTF-8
import time
#获取当前时间
time_now = int(time.time())
#转换成localtime
time_local = time.localtime(time_now)
#转换成新的时间格式(2016-05-09 18:59:20)
dt = time.strftime("%Y-%m-%d %H:%M:%S",time_local)
数据分析师培训
print dt
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15