
简单易学的机器学习算法—Mean Shift聚类算法
一、Mean Shift算法概述
Mean Shift算法,又称为均值漂移算法,Mean Shift的概念最早是由Fukunage在1975年提出的,在后来由Yizong Cheng对其进行扩充,主要提出了两点的改进:
定义了核函数;
增加了权重系数。
核函数的定义使得偏移值对偏移向量的贡献随之样本与被偏移点的距离的不同而不同。权重系数使得不同样本的权重不同。Mean Shift算法在聚类,图像平滑、分割以及视频跟踪等方面有广泛的应用。
二、Mean Shift算法的核心原理
2.1、核函数
在Mean Shift算法中引入核函数的目的是使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同。核函数是机器学习中常用的一种方式。核函数的定义如下所示:
并且满足:
(1)、k是非负的
(2)、k是非增的
(3)、k是分段连续的
那么,函数K(x)就称为核函数。
常用的核函数有高斯核函数。高斯核函数如下所示:
其中,h称为带宽(bandwidth),不同带宽的核函数如下图所示:
上图的画图脚本如下所示:
'''
Date:201604026
@author: zhaozhiyong
'''
import matplotlib.pyplot as plt
import math
def cal_Gaussian(x, h=1):
molecule = x * x
denominator = 2 * h * h
left = 1 / (math.sqrt(2 * math.pi) * h)
return left * math.exp(-molecule / denominator)
x = []
for i in xrange(-40,40):
x.append(i * 0.5);
score_1 = []
score_2 = []
score_3 = []
score_4 = []
for i in x:
score_1.append(cal_Gaussian(i,1))
score_2.append(cal_Gaussian(i,2))
score_3.append(cal_Gaussian(i,3))
score_4.append(cal_Gaussian(i,4))
plt.plot(x, score_1, 'b--', label="h=1")
plt.plot(x, score_2, 'k--', label="h=2")
plt.plot(x, score_3, 'g--', label="h=3")
plt.plot(x, score_4, 'r--', label="h=4")
plt.legend(loc="upper right")
plt.xlabel("x")
plt.ylabel("N")
plt.show()
2.2、Mean Shift算法的核心思想
2.2.1、基本原理
对于Mean Shift算法,是一个迭代的步骤,即先算出当前点的偏移均值,将该点移动到此偏移均值,然后以此为新的起始点,继续移动,直到满足最终的条件。此过程可由下图的过程进行说明(图片来自参考文献3):
步骤1:在指定的区域内计算偏移均值(如下图的黄色的圈)
步骤2:移动该点到偏移均值点处
步骤3: 重复上述的过程(计算新的偏移均值,移动)
步骤4:满足了最终的条件,即退出
从上述过程可以看出,在Mean Shift算法中,最关键的就是计算每个点的偏移均值,然后根据新计算的偏移均值更新点的位置。
2.2.2、基本的Mean Shift向量形式
对于给定的d维空间Rd中的n个样本点,则对于x点,其Mean Shift向量的基本形式为:
其中,Sh指的是一个半径为h的高维球区域,如上图中的蓝色的圆形区域。Sh的定义为:
这样的一种基本的Mean Shift形式存在一个问题:在Sh的区域内,每一个点对x的贡献是一样的。而实际上,这种贡献与x到每一个点之间的距离是相关的。同时,对于每一个样本,其重要程度也是不一样的。
2.2.3、改进的Mean Shift向量形式
基于以上的考虑,对基本的Mean Shift向量形式中增加核函数和样本权重,得到如下的改进的Mean Shift向量形式:
其中:
G(x)是一个单位的核函数。H是一个正定的对称d×d矩阵,称为带宽矩阵,其是一个对角阵。w(xi)⩾0是每一个样本的权重。对角阵H的形式为:
上述的Mean Shift向量可以改写成:
Mean Shift向量Mh(x)是归一化的概率密度梯度。
2.3、Mean Shift算法的解释
在Mean Shift算法中,实际上是利用了概率密度,求得概率密度的局部最优解。
2.3.1、概率密度梯度
对一个概率密度函数f(x),已知d维空间中n个采样点xi,i=1,⋯,n,f(x)的核函数估计(也称为Parzen窗估计)为:
其中
w(xi)⩾0是一个赋给采样点xi的权重
K(x)是一个核函数
概率密度函数f(x)的梯度▽f(x)的估计为
令,则有:
其中,第二个方括号中的就是Mean Shift向量,其与概率密度梯度成正比。
2.3.2、Mean Shift向量的修正
Mh(x)=∑ni=1G(∥∥xi−xh∥∥2)w(xi)xi∑ni=1G(xi−xh)w(xi)−x
记:,则上式变成:
Mh(x)=mh(x)+x
这与梯度上升的过程一致。
2.4、Mean Shift算法流程
Mean Shift算法的算法流程如下:
计算mh(x)
令x=mh(x)
如果∥mh(x)−x∥<ε,结束循环,否则,重复上述步骤
三、实验
3.1、实验数据
实验数据如下图所示(来自参考文献1):
画图的代码如下:
'''
Date:20160426
@author: zhaozhiyong
'''
import matplotlib.pyplot as plt
f = open("data")
x = []
y = []
for line in f.readlines():
lines = line.strip().split("\t")
if len(lines) == 2:
x.append(float(lines[0]))
y.append(float(lines[1]))
f.close()
plt.plot(x, y, 'b.', label="original data")
plt.title('Mean Shift')
plt.legend(loc="upper right")
plt.show()
3.2、实验的源码
#!/bin/python
#coding:UTF-8
'''
Date:20160426
@author: zhaozhiyong
'''
import math
import sys
import numpy as np
MIN_DISTANCE = 0.000001#mini error
def load_data(path, feature_num=2):
f = open(path)
data = []
for line in f.readlines():
lines = line.strip().split("\t")
data_tmp = []
if len(lines) != feature_num:
continue
for i in xrange(feature_num):
data_tmp.append(float(lines[i]))
data.append(data_tmp)
f.close()
return data
def gaussian_kernel(distance, bandwidth):
m = np.shape(distance)[0]
right = np.mat(np.zeros((m, 1)))
for i in xrange(m):
right[i, 0] = (-0.5 * distance[i] * distance[i].T) / (bandwidth * bandwidth)
right[i, 0] = np.exp(right[i, 0])
left = 1 / (bandwidth * math.sqrt(2 * math.pi))
gaussian_val = left * right
return gaussian_val
def shift_point(point, points, kernel_bandwidth):
points = np.mat(points)
m,n = np.shape(points)
#计算距离
point_distances = np.mat(np.zeros((m,1)))
for i in xrange(m):
point_distances[i, 0] = np.sqrt((point - points[i]) * (point - points[i]).T)
#计算高斯核
point_weights = gaussian_kernel(point_distances, kernel_bandwidth)
#计算分母
all = 0.0
for i in xrange(m):
all += point_weights[i, 0]
#均值偏移
point_shifted = point_weights.T * points / all
return point_shifted
def euclidean_dist(pointA, pointB):
#计算pointA和pointB之间的欧式距离
total = (pointA - pointB) * (pointA - pointB).T
return math.sqrt(total)
def distance_to_group(point, group):
min_distance = 10000.0
for pt in group:
dist = euclidean_dist(point, pt)
if dist < min_distance:
min_distance = dist
return min_distance
def group_points(mean_shift_points):
group_assignment = []
m,n = np.shape(mean_shift_points)
index = 0
index_dict = {}
for i in xrange(m):
item = []
for j in xrange(n):
item.append(str(("%5.2f" % mean_shift_points[i, j])))
item_1 = "_".join(item)
print item_1
if item_1 not in index_dict:
index_dict[item_1] = index
index += 1
for i in xrange(m):
item = []
for j in xrange(n):
item.append(str(("%5.2f" % mean_shift_points[i, j])))
item_1 = "_".join(item)
group_assignment.append(index_dict[item_1])
return group_assignment
def train_mean_shift(points, kenel_bandwidth=2):
#shift_points = np.array(points)
mean_shift_points = np.mat(points)
max_min_dist = 1
iter = 0
m, n = np.shape(mean_shift_points)
need_shift = [True] * m
#cal the mean shift vector
while max_min_dist > MIN_DISTANCE:
max_min_dist = 0
iter += 1
print "iter : " + str(iter)
for i in range(0, m):
#判断每一个样本点是否需要计算偏置均值
if not need_shift[i]:
continue
p_new = mean_shift_points[i]
p_new_start = p_new
p_new = shift_point(p_new, points, kenel_bandwidth)
dist = euclidean_dist(p_new, p_new_start)
if dist > max_min_dist:#record the max in all points
max_min_dist = dist
if dist < MIN_DISTANCE:#no need to move
need_shift[i] = False
mean_shift_points[i] = p_new
#计算最终的group
group = group_points(mean_shift_points)
return np.mat(points), mean_shift_points, group
if __name__ == "__main__":
#导入数据集
path = "./data"
data = load_data(path, 2)
#训练,h=2
points, shift_points, cluster = train_mean_shift(data, 2)
for i in xrange(len(cluster)):
print "%5.2f,%5.2f\t%5.2f,%5.2f\t%i" % (points[i,0], points[i, 1], shift_points[i, 0], shift_points[i, 1], cluster[i])
3.3、实验的结果
经过Mean Shift算法聚类后的数据如下所示:
'''
Date:20160426
@author: zhaozhiyong
'''
import matplotlib.pyplot as plt
f = open("data_mean")
cluster_x_0 = []
cluster_x_1 = []
cluster_x_2 = []
cluster_y_0 = []
cluster_y_1 = []
cluster_y_2 = []
center_x = []
center_y = []
center_dict = {}
for line in f.readlines():
lines = line.strip().split("\t")
if len(lines) == 3:
label = int(lines[2])
if label == 0:
data_1 = lines[0].strip().split(",")
cluster_x_0.append(float(data_1[0]))
cluster_y_0.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
elif label == 1:
data_1 = lines[0].strip().split(",")
cluster_x_1.append(float(data_1[0]))
cluster_y_1.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
else:
data_1 = lines[0].strip().split(",")
cluster_x_2.append(float(data_1[0]))
cluster_y_2.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
f.close()
plt.plot(cluster_x_0, cluster_y_0, 'b.', label="cluster_0")
plt.plot(cluster_x_1, cluster_y_1, 'g.', label="cluster_1")
plt.plot(cluster_x_2, cluster_y_2, 'k.', label="cluster_2")
plt.plot(center_x, center_y, 'r+', label="mean point")
plt.title('Mean Shift 2')数据分析师培训
#plt.legend(loc="best")
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01