京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成为分析区域趋势、挖掘空间规律的重要工具。Power BI 作为功能强大的商业智能工具,为基于经纬度数据制作地图热力图提供了便捷且高效的解决方案。本文将详细介绍如何利用 Power BI,从经纬度数据准备到最终生成热力图的完整流程。
制作地图热力图的基础是高质量的经纬度数据,数据的准确性和规范性直接影响热力图的呈现效果。首先,需要确保数据集中包含明确的纬度(Latitude)和经度(Longitude)字段,且字段名称清晰易懂,方便在 Power BI 中识别和使用。
经纬度数据的格式也有严格要求。纬度的取值范围在 - 90 到 90 之间,北纬为正值,南纬为负值;经度的取值范围在 - 180 到 180 之间,东经为正值,西经为负值。数据集中的经纬度数值应采用十进制格式,避免使用度分秒格式,若原始数据为度分秒格式,需提前通过 Excel 等工具转换为十进制。例如,将 “30°30′N” 转换为 30.5 的纬度数值,将 “120°15′E” 转换为 120.25 的经度数值。
同时,要对经纬度数据进行清洗,检查是否存在缺失值、异常值。对于缺失的经纬度数据,可根据相关地址信息通过地图工具查询补充;对于明显超出取值范围的异常值,需核实数据来源并修正,确保数据的可靠性。
在 Power BI 中基于经纬度数据制作地图热力图,需按照以下步骤有序操作。
首先,将准备好的包含经纬度数据的数据集导入 Power BI。点击 “获取数据”,选择对应的数据源格式,如 Excel、CSV 等,按照提示完成数据加载。加载完成后,在 “数据” 视图中可查看数据集的字段列表,确认纬度和经度字段已正确识别。
接着,设置经纬度字段的数据类型。在字段列表中,选中纬度字段,在 “建模” 选项卡的 “数据类型” 下拉菜单中选择 “十进制数”;同样,将经度字段的数据类型也设置为 “十进制数”。然后,在 “建模” 选项卡中找到 “数据类别”,分别将纬度字段的 “数据类别” 设置为 “纬度”,经度字段的 “数据类别” 设置为 “经度”,这一步是 Power BI 正确识别地理数据的关键。
之后,创建热力图视觉对象。在 “可视化” 面板中,找到 “热力图” 图标并点击,此时画布上会出现一个空白的热力图框。将数据集的纬度字段拖至 “视觉对象” 的 “纬度” 区域,将经度字段拖至 “经度” 区域。然后,选择一个用于表示热力强度的数值字段,如销售数量、用户数量等,将其拖至 “值” 区域,Power BI 会自动根据经纬度坐标和数值字段的大小生成热力图,数值越高的区域颜色越深,反之则越浅。
为了使热力图更清晰地传达数据信息,需要进行适当的优化与调整。在 “格式” 选项卡中,可以调整热力图的颜色方案,Power BI 提供了多种预设的颜色主题,也可自定义颜色渐变,选择从冷色调到暖色调的渐变,使不同强度的区域对比更明显。
调整热力图的半径大小也很重要。半径决定了单个数据点影响的区域范围,半径过小,热力图会显得分散,难以看出整体分布趋势;半径过大,可能会掩盖局部的细节差异。在 “格式” 选项卡的 “热力图” 设置中,找到 “半径” 滑块,根据数据的分布密度和分析需求进行调整,使热力图既能体现整体分布,又能展示局部特征。
此外,还可以添加背景地图图层。在 “格式” 选项卡的 “背景” 设置中,可选择不同的地图样式,如街道图、卫星图等,背景地图能为热力图提供更好的地理参考,帮助阅读者理解数据所在的具体地理位置。同时,可通过设置 “缩放” 和 “平移” 功能,方便在查看热力图时聚焦到特定区域。
基于经纬度数据的 Power BI 地图热力图在多个领域都有广泛的应用场景。在零售行业,企业可通过分析门店的经纬度和销售数据生成热力图,直观了解不同区域的销售业绩分布,为新店选址提供数据支持,避开销售冷清区域,选择潜在消费能力强的区域开设门店。
在交通领域,利用交通流量监测点的经纬度和车流量数据制作热力图,能够清晰展示交通拥堵的高发区域和时段,交通管理部门可据此制定针对性的疏导措施,优化交通信号配时,改善交通状况。
在城市规划中,热力图可用于分析人口分布、公共设施使用频率等数据,帮助规划人员合理布局学校、医院、公园等公共资源,提高资源的利用效率,提升城市居民的生活质量。
总之,借助 Power BI 制作基于经纬度数据的地图热力图,能够将复杂的地理数据转化为直观易懂的可视化效果,为企业决策、行业分析提供有力的支持,充分发挥数据的价值。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16