京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分布无严格要求、能有效识别数据趋势与突变点的特性,成为环境科学、气象学、经济学等领域的重要分析工具。而借助 SPSS 这一功能强大的统计分析软件,MK 检验的操作变得更加便捷高效。接下来,我们将深入探讨 SPSS 中 MK 检验的原理、操作步骤、实际应用以及相关注意事项。
Mann-Kendall 检验是一种非参数统计检验方法,它不依赖于数据的具体分布形式,适用于各种类型的数据,包括不满足正态分布的数据。该检验主要用于分析时间序列数据的趋势变化以及检测数据序列中的突变点。
其核心思想基于数据的秩次关系。在时间序列x1,x2,...,xn中,对于任意两个数据点xi和xj(i<j),若i<xj,则记为1;若i>xj,则记为−1;若i=xj,则记为0。通过计算这些秩次关系的统计量,构建检验统计量Z,并与给定的显著性水平(如 0.05)下的临界值进行比较,判断数据是否存在显著趋势。若∣Z∣>Zα/2,则拒绝原假设,认为数据存在显著趋势;若∣Z∣≤Zα/2,则接受原假设,认为数据不存在显著趋势。
在突变点检测方面,通过构建正序列和逆序列的统计量曲线,观察两条曲线的交点,交点对应的时间点即为可能的突变点。
数据准备:将时间序列数据导入 SPSS 软件中,确保数据包含时间变量和对应的观测变量,且数据排列整齐,无缺失值或异常值干扰(如有缺失值,需提前进行合理处理,如删除缺失行或使用插补法填充)。
选择分析方法:在 SPSS 菜单栏中依次点击 “分析” - “非参数检验” - “旧对话框” - “趋势”,打开趋势分析对话框。
变量设置:将观测变量选入 “检验变量列表”,将时间变量选入 “分组变量”,并定义分组变量的范围(如时间序列的起始和结束时间)。
检验选项设置:在 “检验类型” 中选择 “Kendall 的协同系数”(此选项可用于趋势分析),若要进行突变点检测,还需在后续通过编程或特定插件辅助完成。
运行分析:点击 “确定” 按钮,SPSS 将自动计算相关统计量并输出分析结果。结果中主要关注的指标是检验统计量Z值及其对应的显著性水平p值,若p<0.05,则表明数据存在显著趋势。
以某地区近 30 年的年降水量数据为例,利用 SPSS 进行 Mann-Kendall 检验。将年降水量数据录入 SPSS 后,按照上述操作步骤进行分析,得到检验统计量Z=−2.35,显著性水平p=0.019<0.05,这表明该地区近 30 年的年降水量呈现显著的下降趋势。
进一步结合突变点检测(可借助 Python 与 SPSS 联动或其他扩展插件实现),发现降水量在第 15 年左右出现明显突变,降水量下降趋势在此之后更为显著。这一结果为当地水资源管理、农业生产规划等提供了重要的决策依据,例如相关部门可以提前制定节水措施,调整农作物种植结构以应对降水量减少的情况。
优势 对数据分布要求宽松:无需数据满足正态分布等特定条件,适用于各种类型的时间序列数据,在处理现实中复杂多变的数据时具有很强的适应性。
趋势和突变点检测能力强:不仅能够准确判断数据的趋势方向(上升、下降或无趋势),还能有效检测数据序列中的突变点,帮助我们深入了解数据的变化特征。
计算相对简单:相较于一些复杂的参数检验方法,Mann-Kendall 检验的计算过程相对简单,在 SPSS 等软件的辅助下,操作便捷高效。
局限性
对微弱趋势的敏感性不足:当数据中的趋势较为微弱时,Mann-Kendall 检验可能无法准确识别,容易出现漏判的情况。
突变点检测的辅助需求:在 SPSS 原生功能中,突变点检测的操作相对复杂,通常需要借助其他工具或编程辅助完成,增加了分析的难度和门槛。
无法确定趋势的具体函数形式:该检验只能判断数据是否存在趋势以及趋势的方向,无法给出趋势变化的具体函数表达式,不利于对数据变化进行精确建模。
Mann-Kendall 检验在 SPSS 中的应用为我们分析数据的趋势和突变提供了有力的工具。通过掌握其原理、熟练操作步骤,并结合实际案例进行分析,我们能够更好地利用这一方法挖掘数据背后的信息,为各领域的研究和决策提供科学依据。同时,我们也应清楚认识到其局限性,合理选择和结合其他分析方法,以获得更全面、准确的分析结果。
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11