京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快!
平常一整天的表格处理工作,现在只要三步就能搞定,我都害怕有一天我会被deep seek取代,失业了/(ㄒoㄒ)/~~
DeepSeek在处理复杂数据和代码方面非常强。跟其他AI工具比起来,它对Excel数据处理的理解更深入,能够直接读懂你的数据结构,给出超精准的清洗方案。
我第一次用它清洗5000行杂乱的客户数据时,整个人都惊呆了!原本需要3-4小时的工作,愣是被它20分钟解决,效率提升差不多12倍。天呢,摸鱼的时间增加了好多呀(bushi

数据清洗(Data cleaning)即对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。

可以理解为所谓的数据清洗,也就是ELT处理,包含抽取Extract、转换Transform、加载Load这三大法宝。根据不同业务的需求。

咱们先把Excel文件准备好,最好事先想清楚你到底要干嘛。比如:
温馨提示 :给DeepSeek展示几行样例数据比单纯描述问题效果好10倍!可以截图或者复制几行典型数据。
跟DeepSeek对话时,提示词质量决定结果好坏。你可以这么写:

有个小技巧,告诉DeepSeek你的Excel水平,它会根据你的能力给出合适的方案。比如:
DeepSeek通常会给你两种解决方案:
手动操作适合一次性任务,代码则适合重复性工作。我建议两种都看看,先用手动方法试试水。
如果结果不完美,别急着换AI,而是继续追问DeepSeek:"结果中XX部分有问题,如何修正?",或者"能否优化这个脚本,让它处理空值的情况?"
看个实际例子。假设你有一份乱七八糟的客户表格,手机号格式各异(有的带横杠,有的带空格),还有重复记录。
给DeepSeek这样的提示:

DeepSeek会给你超详细的Excel操作步骤,甚至贴心地给出VBA脚本:

温馨提示 :使用代码前先备份原数据!!!
一定一定记得要备份,对于打工人,数据丢失,真的如遭五雷轰顶!!
数据清洗本来是最烦人的Excel工作,但用上DeepSeek后,我反而开始期待处理那些"脏数据"了。如果你还在手动清洗数据,那真的是太浪费生命了!
试试这个三步法,你也能体验一把效率爆表的快感!
随着企业对数据分析的依赖程度加深,掌握数据分析技能成为了许多求职者的目标。为了获得企业的青睐,可以学习CDA数据分析,获得CDA(Certified Data Analyst)认证,不仅能够提升个人的职业技能,还能在竞争激烈的就业市场中脱颖而出,很多企业在招聘时会注明:CDA数据分析师优先。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07