
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快!
平常一整天的表格处理工作,现在只要三步就能搞定,我都害怕有一天我会被deep seek取代,失业了/(ㄒoㄒ)/~~
DeepSeek在处理复杂数据和代码方面非常强。跟其他AI工具比起来,它对Excel数据处理的理解更深入,能够直接读懂你的数据结构,给出超精准的清洗方案。
我第一次用它清洗5000行杂乱的客户数据时,整个人都惊呆了!原本需要3-4小时的工作,愣是被它20分钟解决,效率提升差不多12倍。天呢,摸鱼的时间增加了好多呀(bushi
数据清洗(Data cleaning)即对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。
可以理解为所谓的数据清洗,也就是ELT处理,包含抽取Extract、转换Transform、加载Load这三大法宝。根据不同业务的需求。
咱们先把Excel文件准备好,最好事先想清楚你到底要干嘛。比如:
温馨提示 :给DeepSeek展示几行样例数据比单纯描述问题效果好10倍!可以截图或者复制几行典型数据。
跟DeepSeek对话时,提示词质量决定结果好坏。你可以这么写:
有个小技巧,告诉DeepSeek你的Excel水平,它会根据你的能力给出合适的方案。比如:
DeepSeek通常会给你两种解决方案:
手动操作适合一次性任务,代码则适合重复性工作。我建议两种都看看,先用手动方法试试水。
如果结果不完美,别急着换AI,而是继续追问DeepSeek:"结果中XX部分有问题,如何修正?",或者"能否优化这个脚本,让它处理空值的情况?"
看个实际例子。假设你有一份乱七八糟的客户表格,手机号格式各异(有的带横杠,有的带空格),还有重复记录。
给DeepSeek这样的提示:
DeepSeek会给你超详细的Excel操作步骤,甚至贴心地给出VBA脚本:
温馨提示 :使用代码前先备份原数据!!!
一定一定记得要备份,对于打工人,数据丢失,真的如遭五雷轰顶!!
数据清洗本来是最烦人的Excel工作,但用上DeepSeek后,我反而开始期待处理那些"脏数据"了。如果你还在手动清洗数据,那真的是太浪费生命了!
试试这个三步法,你也能体验一把效率爆表的快感!
随着企业对数据分析的依赖程度加深,掌握数据分析技能成为了许多求职者的目标。为了获得企业的青睐,可以学习CDA数据分析,获得CDA(Certified Data Analyst)认证,不仅能够提升个人的职业技能,还能在竞争激烈的就业市场中脱颖而出,很多企业在招聘时会注明:CDA数据分析师优先。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18