
在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。
分析竞品的第一步是要明确目标。是为了寻找产品的差异化竞争点?还是评估市场份额变化趋势?亦或是为新产品研发获取灵感?
例如,如果目标是优化自家电商 APP 的用户体验,那么竞品分析就要聚焦在其他电商 APP 的用户交互、页面设计和购物流程等方面。
确定哪些产品是真正的竞品。这不仅包括直接竞争对手,即提供相似功能和服务的产品,还可能涉及间接竞争对手,比如那些能满足相同用户需求但采用不同解决方案的产品。
以在线办公软件为例,直接竞品是其他功能类似的在线文档、表格编辑软件,间接竞品可能是一些具有简单协作功能的传统办公软件。
利用公司内部资源,如销售数据、客户反馈数据、用户行为数据等。例如,通过分析自己公司产品的用户使用频率、功能使用情况等数据,对比用户对竞争对手产品的评价数据,了解产品的优势和劣势。
公开渠道:包括公司官网、产品文档、新闻报道、行业报告等。可以从竞争对手的官网获取产品的功能介绍、价格策略、更新日志等信息。
用户调研:进行问卷调查、用户访谈等。例如,设计问卷询问用户在使用不同数据可视化产品时的体验,包括对功能的满意度、遇到的问题、价格接受程度等。
第三方数据平台:如Gartner 等提供的市场份额、用户满意度等数据。
对竞品的功能、性能、价格、用户体验等方面进行一一对比。可以制作表格,将自己公司的产品和竞品的各项特征罗列出来。
从优势(Strengths)、劣势(Weaknesses)、机会(Opportunities)和威胁(Threats)四个维度分析自己公司的产品和竞品。例如,自己公司的数据可视化产品优势可能是价格较低,劣势是可视化效果不够丰富,机会是大数据市场的增长,威胁是竞争对手的品牌知名度高。
从用户的角度出发,分析竞品的易用性、界面设计、操作流程等。可以采用用户旅程地图的方式,记录用户在使用产品过程中的各个环节的体验。
比如,分析用户在使用数据可视化产品时,从数据导入、图表创建到分享展示的整个过程中的体验,找出竞品在用户体验方面的优点和不足。
概述:简述竞品分析的目的、范围和主要结论。
竞品介绍:对每个竞品进行简要介绍,包括公司背景、产品定位、主要功能等。
分析内容:按照选定的分析方法,详细阐述竞品之间的差异和各自的特点。可以包括功能对比、SWOT 分析、用户体验分析等内容。
结论与建议:总结分析结果,提出针对自己公司产品的改进建议和市场策略。
下面举例实践一下:
通过对某宝、某多多、某东等主要竞品的分析,了解它们的产品特点、优势劣势、用户体验等,为我们的购物 APP 提供优化建议,确定差异化竞争策略,以提升市场竞争力和用户满意度。
综合性购物平台,商品种类极其丰富,几乎涵盖了所有品类。拥有庞大的商家资源,面向不同消费层次的用户群体,在 C2C 市场占据重要地位。
特色功能包括直播、聚划算等,通过直播带货和团购等形式促进销售。
以低价团购为特色迅速崛起的购物平台,主打性价比,目标用户群体广泛,尤其在下沉市场有很高的渗透率。
拼单、百亿补贴等功能是其吸引用户的关键,通过用户之间的分享和拼单实现低价购买商品。
以正品保障和优质物流服务著称,主要侧重于 3C 数码、家电等品类,但也在不断拓展其他品类。用户群体注重商品品质和购物效率。
某东自营模式保证了商品质量和售后服务,某东物流实现了快速配送,限时达等服务深受用户好评。
收集数据(从各竞品 APP 首页分类、搜索结果页查看商品品类的覆盖范围。参考用户评价、第三方质量检测报告来评估商品质量情况。)
对比分析(制作品类覆盖表格,对比各平台在服装、数码、家居等主要品类下的细分商品数量和种类。分析用户评价中关于质量问题的比例,如某宝某类商品质量差评率为 x%,某多多为 y%,某东为 z%。)
数据收集(选取热门商品,如 iPhone、某品牌服装等,记录各平台的价格。分析平台的优惠活动形式和力度,如某多多的百亿补贴、某宝的满减活动等。)
对比分析(对比相同商品在不同平台的价格,计算价格差和价格优势比例。例如,某商品在某多多价格比某宝低 a 元,低 b%。评估优惠活动对用户购买决策的影响,如某多多的拼单可享受平均 c% 的折扣,某宝的满减活动在满足一定条件下优惠力度如何。)
数据收集(通过用户体验测试,记录从注册登录、搜索商品、下单支付到售后的整个流程中的操作便利性和时间成本。收集用户反馈,包括 APP 界面设计、功能易用性等方面的评价。)
对比分析(对比各平台的注册登录方式的便捷性,如是否支持多种第三方登录、验证步骤的复杂程度。评估搜索功能的准确性和效率,比较商品详情页的信息完整性和展示效果。)
要想在工作中通过数据分析真正提高工作效率和业务能力,建议还是需要对数据分析进行系统学习,推荐大家可以通过CDA认证来提升职业技能,真正成为数据分析大神!扫码CDA认证小程序,这个小程序里提供了丰富的学习资料,包括考试大纲、学习资料和模拟题。 图片
某宝:品类最全,但由于商家众多,商品质量参差不齐,需要用户有较强的辨别能力。
某多多:品类丰富度不断提升,部分商品质量存在一定问题,但通过百亿补贴等方式保障了部分热门商品的质量。
某东:品类在重点领域有优势,商品质量整体有保障,尤其是京东自营商品。
某多多:价格优势明显,特别是在一些低价商品和通过拼单、补贴后的商品价格极具竞争力。
某宝:价格范围广,有高端和低端商品,通过各种促销活动能满足不同用户的价格需求。
某东:价格相对稳定,在 3C 等品类上有一定价格优势,其会员体系和优惠券等可进一步降低购买成本。
某宝:界面设计丰富但略显复杂,搜索功能强大,有大量个性化推荐,但 APP 功能较多可能对新用户有一定学习成本。
某多多:界面设计略显复杂,操作简单,容易上手,拼单功能突出,但商品展示信息可能相对较少。
某东:界面简洁,购物流程高效,尤其是京东自营商品的购买体验好,但在个性化推荐方面可能稍逊一筹。
某宝的优势在于商品丰富、营销能力强,用户体验有特色但需简化;某多多以低价和社交拼单为核心竞争力,但商品质量和售后需加强;某东则在物流和品质保障上表现出色,价格和营销有提升空间。
各竞品都有其明确的用户定位和核心竞争力,市场竞争激烈,我们的购物 APP 需要找到差异化竞争点。
总结一下
竞品分析不是一次性的工作,市场在不断变化,竞品也在持续发展。数据分析师要关注竞品的新功能发布、价格调整、市场策略变化等,并及时分析这些变化对自家产品和市场竞争态势的影响。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13