
2017云计算及大数据未来发展趋势分析
国家大数据工程实验室是国家大数据产业创新体系的重要组成部分,批复各省将有力推动全国进一步发挥科教资源优势,推进大数据融合技术在相关领域深度应用,促进全国大数据与云计算产业创新发展。
技术发展是产业发展走向繁荣的前提
无论是计算机行业,还是汽车领域,技术形态的成熟是一个必然的要素。如果某个所谓的时代在技术上、硬件上没有达到产业的要求,数据库和平台都是非完整和非稳定的,时代的产业基础也就十分薄弱。从产业的政策角度分析,当技术累积到一定层次,产业政策的出台是必然的。
为了激活云计算的发展,国务院在2015年就出台了《关于促进云计算创新发展培育信息产业新业态的意见》、《云计算白皮书2016》等,这些政策的出现并非偶然,在其背后有很多云计算服务商多年默默的技术耕耘。
技术和政策的形态达到一定的地步,真正的产业化和市场化是否也已经达到?等待入局者必须考虑几个重要因素:一、目的是什么(为了降低成本、提高效率,还是在渠道上更接近用户);二、企业是否愿意使用(产品同质化严重,如何体现差异化);三、是否有助于提高社会福利(消费者福利、管理效率)。
如果这些问题得到肯定的答案,云计算与时代的发展需求相契合,真正的时代大门就会开启。
大数据的运用将更加追求精准化和多维度
大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。
关于大数据的话题,基本围绕三个问题展开:一是数据从哪里来,二是数据如何进行分析,三是数据如何进行商品化。任何大数据都是以应用为主的,在未来,通过多维度、多复合的大数据的精准挖掘,最终提供出优质的商务解决方案才是最关键的。
数据的三个来源分别是政府、企业行业和个人消费。政府数据做了授权,但由于法律和其他方面的不健全,政府数据被滥用。消费者数据来源于电信、金融或类似BAT大企业,流量入口处的数据将被自动抓取,数据提供商可以提供所有维度的数据,但每一个都是局部。
数据优化商在大数据产业链里要想长久发展,必须精通大数据的模型、算法以及数据特征,同时对行业及生态要有明显的敏感性。而算法提供商如果仅仅依赖单纯算法,未来将成为成长软肋。应用提供商最贴近客户、最熟悉客户需求,同时做的是最后的数据整合,在产业链上可能发展空间更大。
IDC行业未来具有很大的发展潜力
中国具有高达6.3亿的大规模网民群体,目前国内仅有3万个机柜,对比美国的3亿群体2.4万个机柜可以看出,中国的数据市场规模还远未达到平衡点,未来将保持高速增长的态势。另一个方面,由于企业客户运营模式的改革,企业的云化增加了对大数据及专业数据中心的需求。
未来云计算产业和大数据产业将呈现规模化发展趋势,市场红利可观,创新、服务、合作、技术将推动互联网科技企业走得更高、更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04