京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大屏可视化推动大数据应用 六大领域应用常态化
随着社会信息化的高速增长,信息的可视化需求也急剧扩大,特别是一些监控中心、指挥中心、调度中心等重要场所,大屏幕显示系统已经成为信息可视化不可或缺的核心基础系统。2017,大数据将在很多信息化相对成熟的领域,进一步得到应用,包括公安、交通、电力、园区管理、网络安全、航天等,切实实现大数据价值,帮助各行业领域管理者从业务管理、事前预警、事中指挥调度、事后分析研判等多个方面提升智能化决策能力。
1、公安领域
大数据时代发展带动了公安领域信息化建设,信息资源已经成为公安部门重要的战斗力要素,信息化成为推动公安警务方式变革的重要引擎。如何打破原有各部门、各警种之间沟通、协作的壁垒,使警务资源得到了合理配置,实现警务效能的最优化,就需要有效整合公安大数据。基于指挥监控中心大屏可视化,构建智慧公安综合管理平台,为公安机关智能化决策提供依据,实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。 从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。
2、交通领域
随着经济社会的高速发展和城市化进程的加快,城市交通拥堵问题日趋严重,目前很多城市都在积极的探索依靠信息技术改善管理模式,以信息化带动城市交通管理现代化。如何有效利用城市庞大的交通运行数据,指挥监控中心大屏可视化就显得尤为重要。
交通领域的大数据应用,可以实现从高速公路的运行情况到城市公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益。实现交通调度、运营、管理的信息化、现代化和智能化,增强城市交通的管理水平和服务水平,满足交通行业平急结合的应用需求,推动智慧交通与低碳城市的建设。
3、电力行业
电力行业是重要的基础产业,电网是实现我国能源战略布局的重要手段、能源产业链的重要环节和国家综合运输体系的重要组成部分。如今,人类社会正面临着能源短缺的局面,可持续发展是当今社会发展的主流,所以电力行业的智能化管理有着更高的要求。如何实现电网的实时监测、预警、调度和智能化资源配置,就需要充分利用电力行业大数据,基于指挥监控中心大屏可视化,实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。
4、园区管理
我国自上世纪80年试行推广产业园区的建设模式,随着社会和经济的快速发展,智慧园区投资规模也保持着稳步增长的态势。然而经济的快速发展使得传统的产业园区遭遇到了前所未有的发展瓶颈,如何促进园区管理向创新化、科技化、智慧化转变,就需要充分利用园区大数据,基于指挥监控中心大屏可视化,实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。
5、网络安全
随着信息技术和网络的快速发展,计算机网络的资源共享愈发开放普及,随之而来的是网络安全问题日益突出。同时,网络安全威胁的范围和内容不断扩大和演化,网络安全形势与挑战日益严峻复杂,如何全方位感知网络安全态势、实时监控网络运行状况、保障信息资产安全,需要将抽象的网络和系统数据进行可视化呈现,把握安全数据背后的规律,挖掘出数据蕴含的知识信息,从而快速发现潜在的网络威胁。基于指挥监控中心大屏可视化,实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。
6、航天领域
航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。基于指挥监控中心大屏可视化,能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控。
一个良好的大数据应用环境,是要从推开门那一刹那开始体验的。随着综合指挥运维中心和大屏幕的普及与常态化,越来越多的用户希望通过可视化手段提升数据使用体验。2017年,大屏可视化将继续发挥助力作用,推动大数据在各行业的应用,真正帮助决策者运筹帷幄,决策千里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15