京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在解释机器学习模型预测结果时,特征重要性评估至关重要。其中,SHAP(SHapley Additive exPlanations)作为一种基于博弈论的方法,通过计算每个特征对模型输出的贡献,帮助我们深入理解模型的预测准确性以及特征之间的相互作用。
选择基准值: 在计算SHAP值之前,首先需选定一个基准值作为参考点,通常可以是所有特征的平均值或某个随机样本。
计算特征子集的预测差异: 针对每个特征,计算包含该特征和不包含该特征时的预测输出差异。这些差异反映了特征对模型预测的影响程度。
加权平均: 将所有可能的特征子集的预测差异进行加权平均,从而得到每个特征的Shapley值。这个过程确保每个特征的重要性都得到公平分配。
可视化和解释: 利用SHAP库提供的工具,如summary_plot和force_plot,可以直观展示SHAP值,帮助我们更好地理解每个特征对模型预测的具体影响。
全局和局部解释: SHAP值不仅在全局层面评估特征的重要性,还能就特定样本的预测结果提供局部解释。
Python库: SHAP提供了一个便捷的Python库,可用于计算和可视化SHAP值。例如,使用shap.TreeExplainer能快速计算树模型的SHAP值。
通过结合博弈论原理和数学优化方法,SHAP值为机器学习模型提供了强大的解释能力,成为理解和改进模型的重要工具。
以CDA认证为例,专业数据分析人士应当熟练掌握SHAP值计算特征重要性的方法。在我的工作中,我曾遇到一项数据挖掘项目,利用SHAP值发现了一些决策树模型中被低估的关键特征,从而成功提升了预测准确率。这在这个项目中,我们首先使用SHAP值对模型的特征重要性进行了全局解释,发现了一些重要特征。然后,我们利用SHAP值对个别样本的预测结果进行局部解释,帮助我们理解模型在每个样本上的预测过程。
通过SHAP值的解释,我们发现了一些之前被忽视的关键特征,这些特征对于模型的预测具有重要影响。基于这些发现,我们对模型进行了调优和改进,加入了新的特征工程方法,并优化了模型参数。
最终,经过调整和改进后的模型在验证集上取得了更高的预测准确率和稳定性,证明了SHAP值在特征重要性评估和模型解释方面的价值。
总的来说,掌握SHAP值计算特征重要性的方法不仅可以提升数据分析专业水平,还能够帮助在实际项目中更好地理解和改进机器学习模型。因此,我认为熟练应用SHAP值是数据分析领域必备的技能之一。您有什么其他问题或者需要进一步了解的内容吗?我可以继续为您提供帮助。
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27