
技术提取智慧 领衔大数据时代
人工智能的终极目标是让机器能够像人一样思考和做事。但是如果机器不能够理解人的语言,那么就不可能实现人机交互,更不可能自主学习。毫无疑问,有关自然语言处理的研究对于解放人类大脑,是继工业革命解放了人类的身体之后的又一次解放。自然语言处理的诱人前景正使得它越来越成为研究的热点。
孜孜爱国情
李辰专注于人工智能领域的自然语言处理新算法及其在生物文本挖掘领域的应用的研究由来已久。2005年李辰加入位于英国剑桥的全球著名的生物信息研究所—欧洲生物信息研究所(EMBL-EBI)以来,一直从事生物医学数据挖掘的研究、开发工作,尤其是基于自然语言处理自动从文本中提取生物医学知识。2010年,他从众多候选者中脱颖而出,被英国剑桥大学授予海外Fellowship。同年,他通过了EMBL-EBI的严格审核,科研项目被采纳在EMBL-EBI进行,成为一位来自非欧盟国家的入选者。在获得剑桥大学博士学位后,他受邀加入麻省理工学院计算机与人工智能实验室,在实验室前任主任、美国工程院院士Victor Zue的团队任博士后研究员,继续专注于基于自然语言处理的文本数据的深度理解研究。在EMBL-EBI积累的生物学科研经历使得李辰对基于自然语言处理的生物文本挖掘这一跨学科领域具有独到的见解。
“树高千尺,不忘根本”。走得越远,对故乡的怀念却越深。这些年,他在外求学做研究的同时,也从未停止过对祖国的关注。“只要心存对事业和对祖国的热爱,什么都不能阻挡我前进的步伐。”决定回国前,排在世界五百强企业前列的UnitedHealth邀请他担任高级管理人员,报酬待遇非常优渥。李辰婉拒了。他还是很希望为国效力。2016年,李辰获得中组部“千人计划”青年人才和西安交通大学“青年拔尖人才计划”,回到了心心念念的祖国,任职于西北这片广袤的土地上,开始了新的科研旅程。
◆ ◆ ◆
大数据的核心——数据挖掘
大数据是一种内容庞大而又多样化的信息资源,被认为是等同于人力资源和物质资源的国家重要战略资源。大数据的价值,不仅仅在于拥有海量的数据信息,更重要的是在于对这些含有意义的数据进行专业化处理,提取最具价值的信息,挖掘找到人们所需要的有价值的东西。人工分析这样大量的数据显然是不现实的,必须要有高效的方法。
数据挖掘是近年来新兴的一种科学计算技术与数据分析方法,它能够有效地从大量数据中提取潜在的信息与知识。在生物信息领域,一系列挖掘算法和挖掘模式的研究提出,并应用于生物数据,取得了传统生物计算技术无可比拟的效果。
在当前大数据时代,重视生物信息学的发展极为重要,也更加需要计算机技术的支持。计算机辅助计算将是生物大数据分析的必由之路,也必将成为生物研究中的中流砥柱。对这一点,李辰坚信不疑。他所带领的生物医学文本挖掘研究组专注于研发数据驱动的机器学习模型和算法,来深度理解文本数据。并积极将科研成果转化为应用。在生物信息领域,这些成功应用对于解决生命学科的重大问题具有深远的意义。
◆ ◆ ◆
把“不可能”变成“可能”
“在科研领域里,意识到一种天才的研究方法,其价值并不在发现本身之下。”在计算机语言方面,李辰研究网络的思维方法无疑是领先一步的。如何能让计算机智能地帮我们理解这些文献,从中自动提取出有价值的知识呢?海量的生物网络反应能够被计算机理解是第一步。李辰支持研发了BioModels数据标准及分析系统,创新性地构建了一个集智能存储、搜索和模拟生化反应网络数学模型的开放平台。这一标准填补了生物信息学领域的网络模型的数据标准空白,成为生化网络模型的标准数据库之一,目前已经存有近十五万生物模型。BioModels也被评为系统生物学领域最重要的数据资源,并且得到多家权威国际学术出版机构的超过200种期刊的推荐。2014年,欧盟在其提出的欧洲生物信息架构计划(ISBE)的详细方案书中阐述了关于建立一个泛欧洲系统生物架构的迫切需要。BioModels被欧盟作为一个成功案例在欧洲生物信息架构计划(ISBE)的方案书中进行了分析。2014年,自然出版社对该系统进行了专访。
在设计数据标准将大量的生化网络数据进行整合后,李辰团队将新的语言模型引入生物文本挖掘领域。研发的多个基于机器学习监督算法的生物文本挖掘模型在领域公认的数据集上进行测试,所得结果证明这些模型的性能均达到国际领先水平。2016年,在生物医学文本挖掘的国际比赛BioNLP上,李辰团队研发的LitWay系统获得了SeeDev任务的第一名。在产学研应用方面,他们研发的新的生物网络提取架构使文本挖掘结果更加符合生物学科研究需求,从而拉近了生物文本挖掘科研与应用的距离。基于分析,进一步提出了结合篇章分析和生物信息学的从反应提取向网络生成的发展方向,得到了业内科研人员的认可。
没有超越现状的睿智和锐气,就没有人类的发展;没有强烈的创新意识,就没有人类的进步。看到李辰和他的团队,看到那股热烈的科研精神,我们也仿佛看到了这一新兴学科的无限可能和美好未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15