
大数据告诉你电视衰落了吗? 仍是强势主流媒体
前不久媒体报道,受个人电脑、平板电脑、智能手机的冲击,北京地区电视机开机率从3年前的70%下降至30%。“互联网取代电视”,唱衰电视的言论让人们疑惑,电视是否正在失去主流媒体的影响力?
11月27日,北京大样本收视数据研究中心发布的最新数据表明:电视仍是强势主流媒体,其内容的时效性、精致性等特性让网络媒体仍然无法取代。
北京地区开机率65.6%
数据显示:11月26日的北京地区有线电视收视用户不重复开机率为65.6%,有线电视收视用户每日每户平均收视时长为208分钟。
随着高清交互节目内容的不断丰富,北京地区有线电视用户每日每户平均收视时长几年来持续增长,从2012年的192分钟已经上升到2014年的206分钟。北京地区高清交互用户近两年平均每日开机率稳定,保持在60%以上,说明了“北京地区电视机开机率从三年前的70%下降至30%”的消息是没有依据的。
开机率65.6%的数据是如何得到的?准确性如何?
歌华有线公司副总经理罗小布在接受记者采访时说:“歌华有线建成的大样本收视数据实时采集分析系统,是基于超过400万户高清交互数字电视机顶盒终端回传数据进行的大数据分析,这个数据绝对可靠。”
据介绍,2012年11月,歌华有线公司成立大样本收视数据研究中心,这是全国广电第一个集科学的数据采集和自主的分析技术为一体的收视数据生产分析工作中心。2014年,中心建成全国首个大样本收视数据实时回传、采集、分析系统,让收视率调查迈入“大数据时代”。
两年来,该中心依托海量高清交互数据生产的北京地区收视率数据产品,成为政府的舆情参考和媒体机构的数据智囊,是电视节目制作的引导参考。“下一步还将为用户提供个性化的智能电视收视服务。”罗小布说。
收视率调查的一场革命
近年来,收视率造假的新闻层出不穷。操作样本户、窃听和截流数据、直接篡改等人为方式干预,造成了“收视率乱象”。
据介绍,不同于传统收视率调查,歌华收视数据研究中心可记录每一用户每一步的操作行为,具有客观、公正、权威的特点;数据自动回传和采集,全程由计算机自动完成,客观反映用户真实行为,没有人为干预,保证数据真实、可信。“这个系统具有夜间自动关机功能,如果夜间4点电视仍没有关,就会询问用户是否继续收看,如果无人回应,就会自动关机。这样使得收视率更加准确。”罗小布介绍道。
数据的实时回传、实时分析、实时发布,满足了大数据时代用户对收视数据越来越快速、高效的要求,具有时效性的特点。同时,中心与中国传媒大学、央视索福瑞、尼尔森、秒针系统、新生代全景、中传瑞智等单位均开展了深度技术合作。
尼尔森大中华区副总裁李昕说,歌华有线双向平台能够实时采集超过400万终端的收视行为、页面访问、业务使用、广告曝光等数据,相对于传统的基于测量仪的小样本来说,无异于一场革命。
“大数据”收视调查将覆盖全国
北京市新闻出版广电局局长李春良告诉记者,国家新闻出版广电总局日前正式批复同意歌华有线发布和提供广播电视收视数据,具体包括两种方式:一是向业内播出机构、广告公司等提供直播节目收视数据情况,包括北京地区所有频道、所有节目一周收视情况,北京地区新闻节目、电视剧节目、综艺节目、体育节目等一周收视情况。二是通过北京地区高清交互平台、报纸、网站,公开发布“北京地区有线电视用户每日不重复开机率”“北京地区有线电视用户每日每户平均收视时长”“北京地区最受观众喜爱的回看节目一周点播情况”“北京地区最受观众喜爱的回看频道一周点播情况”四项收视数据情况。
据透露,2015年,歌华有线大样本收视数据研究中心将逐步实现宽带用户数据、互联网电视数据、手机电视数据的采集,可提供占有率、忠诚度、用户黏性等多维度的收视数据指标。同时,歌华有线将联合全国有线电视网络公司,共同搭建全国收视数据调查研究中心,建设全国收视行为数据库和权威数据采集、分析、发布平台,树立大数据时代行业标准,打造全国收视数据权威发布品牌。
大数据的内核,是对用户需求的精准把握与分析。在大数据时代,传统媒体面临改革的形势下,理念和技术上的革新将为电视行业带来新的发展机遇。本文:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16