京公网安备 11010802034615号
经营许可证编号:京B2-20210330
import pandas as pd
d = pd.DataFrame(['a', 'b', 'c'],columns = ['A'])
d
| A | |
|---|---|
| 0 | a |
| 1 | b |
| 2 | c |
将某列元素拼接一列特定字符串
d['A'].str.cat(['A', 'B', 'C'], sep=',')
0 a,A
1 b,B
2 c,C
Name: A, dtype: object
将某列的元素合并为一个字符串
d['A'].str.cat(sep=',')
'a,b,c'
import numpy as np
import pandas as pd
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d
| A | |
|---|---|
| 0 | a_b_c |
| 1 | c_d_e |
| 2 | NaN |
| 3 | f_g_h |
将某列的字符串元素进行切分
d['A'].str.split('_')
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
Name: A, dtype: object
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d['A']
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.get(2)
0 b
1 d
2 NaN
3 g
Name: A, dtype: object
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d['A']
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.join("!")
0 a!_!b!_!c
1 c!_!d!_!e
2 NaN
3 f!_!g!_!h
Name: A, dtype: object
d['A'].str.contains('d')
0 False
1 True
2 NaN
3 False
Name: A, dtype: object
d.fillna('0')[d.fillna('0')['A'].str.contains('d')]
| A | |
|---|---|
| 1 | c_d_e |
d.fillna('0')[d['A'].fillna('0').str.contains('d|e')]
#表示或的关系用"A|B",表示且用'A.*B|B.*A'
| A | |
|---|---|
| 1 | c_d_e |
d['A'].str.replace("_", ".")
0 a.b.c
1 c.d.e
2 NaN
3 f.g.h
Name: A, dtype: object
d['A'].str.repeat(3)
0 a_b_ca_b_ca_b_c
1 c_d_ec_d_ec_d_e
2 NaN
3 f_g_hf_g_hf_g_h
Name: A, dtype: object
d['A'].str.pad(10, fillchar="0")
0 00000a_b_c
1 00000c_d_e
2 NaN
3 00000f_g_h
Name: A, dtype: object
d['A'].str.pad(10, side="right", fillchar="?")
0 a_b_c?????
1 c_d_e?????
2 NaN
3 f_g_h?????
Name: A, dtype: object
d['A'].str.center(10, fillchar="?")
0 ??a_b_c???
1 ??c_d_e???
2 NaN
3 ??f_g_h???
Name: A, dtype: object
d['A'].str.ljust(10, fillchar="?")
0 a_b_c?????
1 c_d_e?????
2 NaN
3 f_g_h?????
Name: A, dtype: object
d['A'].str.rjust(10, fillchar="?")
0 ?????a_b_c
1 ?????c_d_e
2 NaN
3 ?????f_g_h
Name: A, dtype: object
d['A'].str.zfill(10)
0 00000a_b_c
1 00000c_d_e
2 NaN
3 00000f_g_h
Name: A, dtype: object
d['A'].str.wrap(3)
0 a_bn_c
1 c_dn_e
2 NaN
3 f_gn_h
Name: A, dtype: object
d['A'].str.slice(1,3)
0 _b
1 _d
2 NaN
3 _g
Name: A, dtype: object
d['A'].str.slice_replace(1, 3, "?")
0 a?_c
1 c?_e
2 NaN
3 f?_h
Name: A, dtype: object
d['A'].str.count("b")
0 1.0
1 0.0
2 NaN
3 0.0
Name: A, dtype: float64
d['A'].str.startswith("a")
0 True
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.endswith("e")
0 False
1 True
2 NaN
3 False
Name: A, dtype: object
d['A'].str.findall("[a-z]")
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
Name: A, dtype: object
d['A'].str.match("[d-z]")
0 False
1 False
2 NaN
3 True
Name: A, dtype: object
d['A'].str.extract("([d-z])")
| 0 | |
|---|---|
| 0 | NaN |
| 1 | d |
| 2 | NaN |
| 3 | f |
d['A'].str.len()
0 5.0
1 5.0
2 NaN
3 5.0
Name: A, dtype: float64
df = pd.DataFrame(['a_b ', ' d_e ', np.nan, 'f_g '],columns = ['B'])
df['B']
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.strip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.rstrip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.lstrip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
d['A'] .str.partition('_')
| 0 | 1 | 2 | |
|---|---|---|---|
| 0 | a | _ | b_c |
| 1 | c | _ | d_e |
| 2 | NaN | NaN | NaN |
| 3 | f | _ | g_h |
d['A'].str.rpartition('_')
| 0 | 1 | 2 | |
|---|---|---|---|
| 0 | a_b | _ | c |
| 1 | c_d | _ | e |
| 2 | NaN | NaN | NaN |
| 3 | f_g | _ | h |
d['A'].str.lower()
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.upper()
0 A_B_C
1 C_D_E
2 NaN
3 F_G_H
Name: A, dtype: object
d['A'].str.find('d')
0 -1.0
1 2.0
2 NaN
3 -1.0
Name: A, dtype: float64
d['A'].str.rfind('d')
0 -1.0
1 2.0
2 NaN
3 -1.0
Name: A, dtype: float64
d['A'].str.index('_')
0 1.0
1 1.0
2 NaN
3 1.0
Name: A, dtype: float64
d['A'].str.rindex('_')
0 3.0
1 3.0
2 NaN
3 3.0
Name: A, dtype: float64
d['A'].str.capitalize()
0 A_b_c
1 C_d_e
2 NaN
3 F_g_h
Name: A, dtype: object
d['A'].str.capitalize()
0 A_b_c
1 C_d_e
2 NaN
3 F_g_h
Name: A, dtype: object
d['A'].str.isalnum()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isalpha()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isdigit()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isspace()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.islower()
0 True
1 True
2 NaN
3 True
Name: A, dtype: object
d['A'].str.isupper()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.istitle()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isnumeric()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isdecimal()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03