交叉表显示了每个变量的不同类别组合中观察到的频率或计数。通俗地说,就是根据不同列的数据统计了频数
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"]
})
df
pd.crosstab(df['High'], df['Weight'])
Weight | 中 | 轻 | 重 |
---|---|---|---|
High | |||
中 | 1 | 1 | 1 |
低 | 1 | 2 | 1 |
高 | 1 | 1 | 2 |
双层crosstab
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"],
'Size': ["大", "中", "小", "中", "中", "大", "中", "小", "小", "大", "小"]})
df
High | Weight | Size | |
---|---|---|---|
0 | 高 | 重 | 大 |
1 | 高 | 轻 | 中 |
2 | 高 | 中 | 小 |
3 | 中 | 中 | 中 |
4 | 中 | 轻 | 中 |
5 | 中 | 重 | 大 |
6 | 低 | 重 | 中 |
7 | 低 | 轻 | 小 |
8 | 低 | 中 | 小 |
9 | 高 | 重 | 大 |
10 | 低 | 轻 | 小 |
pd.crosstab(df['High'], [df['Weight'], df['Size']], rownames=['High'], colnames=['Weight', 'Size'])
Weight | 中 | 轻 | 重 | |||
---|---|---|---|---|---|---|
Size | 中 | 小 | 中 | 小 | 中 | 大 |
High | ||||||
中 | 1 | 0 | 1 | 0 | 0 | 1 |
低 | 0 | 1 | 0 | 2 | 1 | 0 |
高 | 0 | 1 | 1 | 0 | 0 | 2 |
另一种 宽表转长表 pd.wide_to_long()
np.random.seed(123)
df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
"A1980" : {0 : "d", 1 : "e", 2 : "f"},
"B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
"B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
"X" : dict(zip(range(3), np.random.randn(3)))
})
df["id"] = df.index
df
A1970 | A1980 | B1970 | B1980 | X | id | |
---|---|---|---|---|---|---|
0 | a | d | 2.5 | 3.2 | -1.085631 | 0 |
1 | b | e | 1.2 | 1.3 | 0.997345 | 1 |
2 | c | f | 0.7 | 0.1 | 0.282978 | 2 |
把id
列用作标识列
pd.wide_to_long(df, ["A", "B"], i="id", j="year")
X | A | B | ||
---|---|---|---|---|
id | year | |||
0 | 1970 | -1.085631 | a | 2.5 |
1 | 1970 | 0.997345 | b | 1.2 |
2 | 1970 | 0.282978 | c | 0.7 |
0 | 1980 | -1.085631 | d | 3.2 |
1 | 1980 | 0.997345 | e | 1.3 |
2 | 1980 | 0.282978 | f | 0.1 |
df = pd.DataFrame({
'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
})
df
famid | birth | ht1 | ht2 | |
---|---|---|---|---|
0 | 1 | 1 | 2.8 | 3.4 |
1 | 1 | 2 | 2.9 | 3.8 |
2 | 1 | 3 | 2.2 | 2.9 |
3 | 2 | 1 | 2.0 | 3.2 |
4 | 2 | 2 | 1.8 | 2.8 |
5 | 2 | 3 | 1.9 | 2.4 |
6 | 3 | 1 | 2.2 | 3.3 |
7 | 3 | 2 | 2.3 | 3.4 |
8 | 3 | 3 | 2.1 | 2.9 |
把famid
, birth
两列用作标识列
l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
l
ht | |||
---|---|---|---|
famid | birth | age | |
1 | 1 | 1 | 2.8 |
2 | 3.4 | ||
2 | 1 | 2.9 | |
2 | 3.8 | ||
3 | 1 | 2.2 | |
2 | 2.9 | ||
2 | 1 | 1 | 2.0 |
2 | 3.2 | ||
2 | 1 | 1.8 | |
2 | 2.8 | ||
3 | 1 | 1.9 | |
2 | 2.4 | ||
3 | 1 | 1 | 2.2 |
2 | 3.3 | ||
2 | 1 | 2.3 | |
2 | 3.4 | ||
3 | 1 | 2.1 | |
2 | 2.9 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03