京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分组聚合(group by)顾名思义就是分2步:
groupby()对某列进行分组agg()函数里应用聚合函数计算结果,如sum()、mean()、count()、max()、min()等,用于对每个分组进行聚合计算。import pandas as pd
import numpy as np
import random
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
| A | B | C | D | |
|---|---|---|---|---|
| 0 | a | L | 107 | 22 |
| 1 | b | L | 177 | 59 |
| 2 | a | M | 139 | 38 |
| 3 | b | N | 3 | 50 |
| 4 | a | M | 52 | 60 |
| 5 | b | M | 38 | 82 |
单列分组
① 对单列分组后应用sum聚合函数
df.groupby('A').sum()
| C | D | |
|---|---|---|
| A | ||
| a | 298 | 120 |
| b | 218 | 191 |
② 对单列分组后应用单个指定的聚合函数
df.groupby('A').agg({'C': 'min'}).rename(columns={'C': 'C_min'})
| C_min | |
|---|---|
| A | |
| a | 52 |
| b | 3 |
③ 对单列分组后应用多个指定的聚合函数
df.groupby(['A']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
| C_max | D_min | |
|---|---|---|
| A | ||
| a | 139 | 22 |
| b | 177 | 50 |
两列分组
① 对多列分组后应用sum聚合函数:
df.groupby(['A', 'B']).sum()
| C | D | ||
|---|---|---|---|
| A | B | ||
| a | L | 107 | 22 |
| M | 191 | 98 | |
| b | L | 177 | 59 |
| M | 38 | 82 | |
| N | 3 | 50 |
② 对两列进行group 后,都应用max聚合函数
df.groupby(['A','B']).agg({'C':'max'}).rename(columns={'C': 'C_max'})
| C_max | ||
|---|---|---|
| A | B | |
| a | L | 107 |
| M | 139 | |
| b | L | 177 |
| M | 38 | |
| N | 3 |
③ 对两列进行分组group 后,分别应用max、min聚合函数
df.groupby(['A','B']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
| C_max | D_min | ||
|---|---|---|---|
| A | B | ||
| a | L | 107 | 22 |
| M | 139 | 38 | |
| b | L | 177 | 59 |
| M | 38 | 82 | |
| N | 3 | 50 |
补充1: 应用自定义的聚合函数
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
| A | B | C | D | |
|---|---|---|---|---|
| 0 | a | L | 107 | 22 |
| 1 | b | L | 177 | 59 |
| 2 | a | M | 139 | 38 |
| 3 | b | N | 3 | 50 |
| 4 | a | M | 52 | 60 |
| 5 | b | M | 38 | 82 |
# 使用自定义的聚合函数计算每个分组的最大值和最小值
def custom_agg(x):
return x.max() - x.min()
result = df[['B','C']].groupby('B').agg({'C': custom_agg})
result
| C | |
|---|---|
| B | |
| L | 70 |
| M | 101 |
| N | 0 |
补充2: 开窗函数(类似于SQL里面的over partition by):
使用transform函数计算每个分组的均值
# 使用transform函数计算每个分组的均值
df['B_C_std'] = df[['B','C']].groupby('B')['C'].transform('mean')
df
| A | B | C | D | B_C_std | |
|---|---|---|---|---|---|
| 0 | a | L | 107 | 22 | 142.000000 |
| 1 | b | L | 177 | 59 | 142.000000 |
| 2 | a | M | 139 | 38 | 76.333333 |
| 3 | b | N | 3 | 50 | 3.000000 |
| 4 | a | M | 52 | 60 | 76.333333 |
| 5 | b | M | 38 | 82 | 76.333333 |
补充3: 分组聚合拼接字符串 pandas实现类似 group_concat 功能
假设有这样一个数据:
df = pd.DataFrame({
'姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语']
})
df
| 姓名 | 科目 | |
|---|---|---|
| 0 | 张三 | 语文 |
| 1 | 张三 | 数学 |
| 2 | 张三 | 英语 |
| 3 | 李四 | 语文 |
| 4 | 李四 | 数学 |
| 5 | 李四 | 英语 |
补充:按某列分组,将另一列文本拼接合并
按名称分组,把每个人的科目拼接到一个字符串:
# 对整个group对象中的所有列应用join 连接元素
(df.astype(str)# 先将数据全转为字符
.groupby('姓名')# 分组
.agg(lambda x : ','.join(x)))[['科目']]# join 连接元素
| 科目 | |
|---|---|
| 姓名 | |
| 张三 | 语文,数学,英语 |
| 李四 | 语文,数学,英语 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03