京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、concat()、merge()。
append()函数用于将一个DataFrame或Series对象追加到另一个DataFrame中。
import pandas as pd
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
| A | B | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
df1.append(df2,ignore_index=True)
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 2 | b | 2 |
| 3 | c | 3 |
| 4 | d | 4 |
concat()函数用于沿指定轴将多个对象(比如Series、DataFrame)堆叠在一起。可以沿行或列方向进行拼接。
先看一个上下堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
| A | B | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
pd.concat([df1,df2],axis =0) # 上下拼接
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
再看一个左右堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b']})
df1
| A | |
|---|---|
| 0 | a |
| 1 | b |
df2 = pd.DataFrame({'B': [1, 2],
'C': [2, 4]})
df2
| B | C | |
|---|---|---|
| 0 | 1 | 2 |
| 1 | 2 | 4 |
pd.concat([df1,df2],axis =1) # 左右拼接
| A | B | C | |
|---|---|---|---|
| 0 | a | 1 | 2 |
| 1 | b | 2 | 4 |
merge()函数用于根据一个或多个键将两个DataFrame的行连接起来。类似于SQL中的JOIN操作。

先看一下 inner 和 outer连接
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
| A | B | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
pd.merge(df1,df2,how = 'inner')
| A | B | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
pd.merge(df1,df2,how = 'outer')
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 2 | c | 3 |
| 3 | d | 4 |
再看左右链接的例子:
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'C': [2, 3, 4]})
df2
| A | C | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
pd.merge(df1,df2,how = 'left',on = "A") # 左连接
| A | B | C | |
|---|---|---|---|
| 0 | a | 1 | NaN |
| 1 | b | 2 | 2.0 |
| 2 | c | 3 | 3.0 |
pd.merge(df1,df2,how = 'right',on = "A") # 右连接
| A | B | C | |
|---|---|---|---|
| 0 | b | 2.0 | 2 |
| 1 | c | 3.0 | 3 |
| 2 | d | NaN | 4 |
pd.merge(df1,df2,how = 'inner',on = "A") # 内连接
| A | B | C | |
|---|---|---|---|
| 0 | b | 2 | 2 |
| 1 | c | 3 | 3 |
pd.merge(df1,df2,how = 'outer',on = "A") # 外连接
| A | B | C | |
|---|---|---|---|
| 0 | a | 1.0 | NaN |
| 1 | b | 2.0 | 2.0 |
| 2 | c | 3.0 | 3.0 |
| 3 | d | NaN | 4.0 |
补充1个小技巧
df1[df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中也存在的行
| A | B | |
|---|---|---|
| 1 | b | 2 |
| 2 | c | 3 |
df1[~df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中不存在的行
| A | B | |
|---|---|---|
| 0 | a | 1 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04