京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多考了CDA数据分析一级的伙伴经常问的就是:如何来找一些数据分析的项目来做,练习所学习的数据分析技能,并能写出一份数据分析报告呢?想转数据运营,如果没有项目经验很难找到一份相关工作。

秋招面试数据分析,没有项目经验面试还有希望吗?从哪里可以学习如何做数据分析项目?如何找到项目做?如何出报告?今天小编给大家推荐两个超好用的项目网站:
网址:https://www.kaggle.com Kaggle发布了大量的数据分析、挖掘、机器学习预测项目,没有实习和项目经历的小伙伴可以在Kaggle上找到项目练手。Kaggle上的项目有不同的项目分类,包括探索性分析,数据可视化,趋势预测,分类等多种类型,可以根据自己的需要选择不同过类型的项目练手。

网址:https://tianchi.aliyun.com/ Kaggle的项目都是英文的,有的小伙伴可能觉得英文看起来太费劲,阿里天池的项目全是中文的,阅读无障碍。

另外,这里给大家整理了6个适合新人的项目:
https://www.kaggle.com/jessemostipak/hotel-booking-demand
该数据集包含城市酒店和度假酒店的预订信息,包括预订时间、停留时间,成人/儿童/婴儿人数以及可用停车位数量等信息。 适用场景:社会科学、旅行、酒店、用户行为,不具有明显的行业标识,可进行常规用户行为分析。 数据量:32列共12W数据量。 可以定义的问题: 1)基本情况:城市酒店和假日酒店预订需求和入住率比较; 2)用户行为:提前预订时长、入住时长、预订间隔、餐食预订情况; 3)一年中最佳预订酒店时间; 4)利用Logistic预测酒店预订。
https://www.kaggle.com/sobhanmoosavi/us-accidents 覆盖全美49州的全国性交通事故数据集,时间跨度:2016.02-2019.12,包括事故严重程度、事故开始和结束时间、事故地点、天气、温度、湿度等数据。 适用场景:无明显行业标识,通用。数据量:49列共300W数据量。 可以定义的问题:
https://www.kaggle.com/gregorut/videogamesales
包含游戏名称、类型、发行时间、发布者以及在全球各地的销售额数据。 适用场景:电商、游戏销售,常规销售数据。数据量:11列共1.66W数据量。 可以定义的问题: 1)电子游戏市场分析:受欢迎的游戏、类型、发布平台、发行人等; 2)预测每年电子游戏销售额。 3)可视化应用:如何完整清晰地展示这个销售故事。
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
世界卫生组织(WHO)旗下的全球卫生观察站(GHO)数据存储库跟踪了所有国家的健康状况以及许多其他相关因素,该数据集包括了人口统计学变量,收入构成和死亡率等信息。 可以定义的问题: 1)最初选择的各种预测因素是否会真正影响预期寿命? 2)哪些预测变量实际上会影响预期寿命? 3)预期寿命值低于(<65)的国家是否应该增加其医疗保健支出以改善其平均寿命? 4)婴儿和成人死亡率如何影响预期寿命? 5)预期寿命与饮食习惯,生活方式,运动,吸烟,饮酒等有正相关还是负相关? 6)学校教育对人类寿命有何影响? 7)预期寿命与饮酒有正面还是负面的关系?
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
IBM员工离职原因数据及包括员工编号、年龄、受教育程度、离家距离、生活和工作的平衡、工作参与情况等信息。 可以定义的问题: 1)通过分析该数据集可以找出员工流失的因素2)工作角色和流失率的相关性; 3)离家距离与流失率的相关性; 4)平均月收入和受教育程度对流失率的影响?
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
数据内容:数据分为汇总版和明细版两类。 数据包括: 短租房源基础信息,包括房源、房东、位置、类型、价格、评论数量和可租时间等等。另外还有短租房源时间表信息,包括房源、时间、是否可租、租金和可租天数等等。 可以定义的问题: (1)计算房东的质量分数,实现房东的精细化运营管理。 (2)通过对房源信息进行量化,挖掘最受用户欢迎的房源。 (3)向客户推荐各个地区“最便宜”、“最精致”、“最小资”、“最有性价比”……的房源。
顺道再说一下CDA数据分析师一级,这个证书真的实用性特别高,很多考点在工作中都能遇到应用场景,如果有小伙伴想提升数据分析能力,那可以以考代练,考过CDA数据分析一级顺便提升能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08