京公网安备 11010802034615号
经营许可证编号:京B2-20210330
离群值的判断与处理
我们在数据分析的时候,经常会碰到某些数据远远大于或小于其他数据,这些明显偏离的数据就是离群值,也叫奇异值、极端值。
离群值产生的原因大致有两点:
1.总体固有变异的极端表现,这是真实而正常的数据,只是在这次实验中表现的有些极端,这类离群值与其余观测值属于同一总体。
2.由于试验条件和实验方法的偶然性,或观测、记录、计算时的失误所产生的结果,是一种非正常的、错误的数据,这些数据与其余观测值不属于同一总体。
由于数据的分布不同,判断离群值的方法也有所差别,在此只介绍国标GB/T4883-2008对于正态分布情况下的离群值判断方法,其他分布情况下,我还没有找到相关资料。
对于离群值,国标也有一些概念定义:
1.检出水平
为检验出离群值而指定的统计检验的显著性水平,和大多数检验一样,α一般为0.05
2.剔除水平
为检验出离群值是否为高度离群值而指定的统计检验的显著性水平,剔除水平α*不应超过检出水平α,通常为0.01,个人认为这个剔除水平就是判断该离群值是否需要实际剔除,也就是说该离群值有可能是第二类原因产生的非正常样本数据。
3.统计离群值
在剔除水平下统计检验为显著的离群值
4.歧离值
在检出水平下显著,而在剔除水平下不显著的离群值。
================================================
正态分布情况下的离群值判断方法,大致可分为两类:可以检验剔除水平和不可检验剔除水平
一、可检验剔除水平
1.总体标准差已知时,奈尔检验法
对样本数据按从小到大顺序排序,
如怀疑最大值X(n)为最大值,则计算统计量Rn
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Rn'
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α*(n)时,判定X(1)为统计离群值,否则不能判定
2.总体标准差未知时,格拉布斯检验法
对样本数据按从小到大顺序排序,然后计算样本均值和样本标准差s

如怀疑最大值X(n)为最大值,计算统计量Gn
确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Gn'

确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α*(n)时,判定X(1)为统计离群值,否则不能判定
3.总体标准差未知时,狄克逊(Dixon)检验法
对样本数据按从小到大顺序排序
样本量n在3-30时
计算统计量

样本量n在30-100时
计算统计量

确定检出水平α,查狄克逊系数表(见国标GB/T4883-2008),得出临界值
当Dn>D1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当Dn'>D1-α*(n)时,判定低端值X(1)为离群值,否则不能判定
4.总体标准差未知时,偏度-峰度检验法
我们知道峰度和偏度是判断数据是否为正态分布的指标,而离群值则明显偏离样本主体,因此我们也可以使用偏度-峰度检验法来判断离群值
单侧情形——偏度检验法
当离群值处于高端或低端一侧时,可使用偏度检验法判断,首先构造偏度统计量bs
确定检出水平α,查偏度检验系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当bs'>b1-α(n)时,判定低端值X(1)为离群值,否则不能判定
确定剔除水平α*,查偏度系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α*(n)时,判定高端值X(n)为统计离群值,否则不能判定
当bs'>b1-α*(n)时,判定低端值X(1)为统计离群值,否则不能判定
双侧情形——峰度检验法
当高端、低端两侧都可能出现离群值时,可使用峰度检验法判断,首先构造峰度统计量bk
确定检出水平α,查峰度检验系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α(n)时,判定离均值最远的观测值为离群值,否则判定未发现离群值
确定剔除水平α*,查峰度系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α*(n)时,判定离均值最远的观测值为统计离群值,否则未发现统计离群值。
二、不可检验剔除水平
1.观察法
根据直方图或四分位图进行判断,现在很多统计软件在绘制这两种图时,都会将离群值特殊标记,一般认为在均值±3倍标准差以外都属于离群值,高出四分位距两倍以上也属于离群值。
2.莱伊达法
又称为3σ准则,在已知总体标准差的情况下使用σ进行判断,但是实际上总体标准差往往未知,因此常使用样本标准差s替代σ,以样本均值替代真值,具体为
Xd是疑似离群值,X为均值
如果疑似离群值与均值的差值大于三倍标准差,则可认为该值为离群值。
3.肖维特法
统计量
如果计算出的ω值大于肖维特系数表中相应测定次数n时的值,则可认为该值为异常值
3.罗曼诺夫斯基检验法
又称t检验,首先将疑似离群值剔除,然后计算剔除后的均值和标准差

根据测量次数n和显著性水平α,进行t检验,得出系数k,如果
则认为xj为离群值
4.4d检验法



5.中位数与算数平均值比较判断法
我们知道中位数居于一组数据中间的数,而均值则可认为是一组数字的“重心”或“平衡点”,当二者相等的时候,可认为这组数字是绝对平衡、没有离群值的,我们可以据此进行判断,当二者相差较大时,表面该组数据可能存在离群值,将疑似离群值剔除之后,再计算均值和中位数,如果二者相差变小,则可认为被剔除值是离群值。
======================================
数据分析师们:判断离群值方法的选择与应注意的问题
1.合理选择离群值的判断方法
离群值的判断方法很多,实际中到底选用哪一个,需根据对测量要求的精准度和测量次数多少来综合确定,一般情况下,测量次数多于30,或大于10次且只做粗略判断时,使用莱伊达法即可;判断精度要求不高,但要求快捷方便时,可以选用4d和中位数与算数平均数比较法。实际上,对于不用查表的方法大都比较便捷,但是代价是精度不够,且无法检验剔除水平,相反一些需要借助查表的方法精度较高但是计算复杂,各有利弊。
2.准确找出离群值
一般情况下,测量列中残差较大者就是疑似离群值,它也就是样本数据中的最大值或最小值
3.查找产生离群值的原因
已经判断为离群值的,即使是统计离群值,也不要简单剔除了之,应进一步分析产生离群值的原因。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03