
离群值的判断与处理
我们在数据分析的时候,经常会碰到某些数据远远大于或小于其他数据,这些明显偏离的数据就是离群值,也叫奇异值、极端值。
离群值产生的原因大致有两点:
1.总体固有变异的极端表现,这是真实而正常的数据,只是在这次实验中表现的有些极端,这类离群值与其余观测值属于同一总体。
2.由于试验条件和实验方法的偶然性,或观测、记录、计算时的失误所产生的结果,是一种非正常的、错误的数据,这些数据与其余观测值不属于同一总体。
由于数据的分布不同,判断离群值的方法也有所差别,在此只介绍国标GB/T4883-2008对于正态分布情况下的离群值判断方法,其他分布情况下,我还没有找到相关资料。
对于离群值,国标也有一些概念定义:
1.检出水平
为检验出离群值而指定的统计检验的显著性水平,和大多数检验一样,α一般为0.05
2.剔除水平
为检验出离群值是否为高度离群值而指定的统计检验的显著性水平,剔除水平α*不应超过检出水平α,通常为0.01,个人认为这个剔除水平就是判断该离群值是否需要实际剔除,也就是说该离群值有可能是第二类原因产生的非正常样本数据。
3.统计离群值
在剔除水平下统计检验为显著的离群值
4.歧离值
在检出水平下显著,而在剔除水平下不显著的离群值。
================================================
正态分布情况下的离群值判断方法,大致可分为两类:可以检验剔除水平和不可检验剔除水平
一、可检验剔除水平
1.总体标准差已知时,奈尔检验法
对样本数据按从小到大顺序排序,
如怀疑最大值X(n)为最大值,则计算统计量Rn
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Rn'
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α*(n)时,判定X(1)为统计离群值,否则不能判定
2.总体标准差未知时,格拉布斯检验法
对样本数据按从小到大顺序排序,然后计算样本均值和样本标准差s
如怀疑最大值X(n)为最大值,计算统计量Gn
确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Gn'
确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α*(n)时,判定X(1)为统计离群值,否则不能判定
3.总体标准差未知时,狄克逊(Dixon)检验法
对样本数据按从小到大顺序排序
样本量n在3-30时
计算统计量
样本量n在30-100时
计算统计量
确定检出水平α,查狄克逊系数表(见国标GB/T4883-2008),得出临界值
当Dn>D1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当Dn'>D1-α*(n)时,判定低端值X(1)为离群值,否则不能判定
4.总体标准差未知时,偏度-峰度检验法
我们知道峰度和偏度是判断数据是否为正态分布的指标,而离群值则明显偏离样本主体,因此我们也可以使用偏度-峰度检验法来判断离群值
单侧情形——偏度检验法
当离群值处于高端或低端一侧时,可使用偏度检验法判断,首先构造偏度统计量bs
确定检出水平α,查偏度检验系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当bs'>b1-α(n)时,判定低端值X(1)为离群值,否则不能判定
确定剔除水平α*,查偏度系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α*(n)时,判定高端值X(n)为统计离群值,否则不能判定
当bs'>b1-α*(n)时,判定低端值X(1)为统计离群值,否则不能判定
双侧情形——峰度检验法
当高端、低端两侧都可能出现离群值时,可使用峰度检验法判断,首先构造峰度统计量bk
确定检出水平α,查峰度检验系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α(n)时,判定离均值最远的观测值为离群值,否则判定未发现离群值
确定剔除水平α*,查峰度系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α*(n)时,判定离均值最远的观测值为统计离群值,否则未发现统计离群值。
二、不可检验剔除水平
1.观察法
根据直方图或四分位图进行判断,现在很多统计软件在绘制这两种图时,都会将离群值特殊标记,一般认为在均值±3倍标准差以外都属于离群值,高出四分位距两倍以上也属于离群值。
2.莱伊达法
又称为3σ准则,在已知总体标准差的情况下使用σ进行判断,但是实际上总体标准差往往未知,因此常使用样本标准差s替代σ,以样本均值替代真值,具体为
Xd是疑似离群值,X为均值
如果疑似离群值与均值的差值大于三倍标准差,则可认为该值为离群值。
3.肖维特法
统计量
如果计算出的ω值大于肖维特系数表中相应测定次数n时的值,则可认为该值为异常值
3.罗曼诺夫斯基检验法
又称t检验,首先将疑似离群值剔除,然后计算剔除后的均值和标准差
根据测量次数n和显著性水平α,进行t检验,得出系数k,如果
则认为xj为离群值
4.4d检验法
5.中位数与算数平均值比较判断法
我们知道中位数居于一组数据中间的数,而均值则可认为是一组数字的“重心”或“平衡点”,当二者相等的时候,可认为这组数字是绝对平衡、没有离群值的,我们可以据此进行判断,当二者相差较大时,表面该组数据可能存在离群值,将疑似离群值剔除之后,再计算均值和中位数,如果二者相差变小,则可认为被剔除值是离群值。
======================================
数据分析师们:判断离群值方法的选择与应注意的问题
1.合理选择离群值的判断方法
离群值的判断方法很多,实际中到底选用哪一个,需根据对测量要求的精准度和测量次数多少来综合确定,一般情况下,测量次数多于30,或大于10次且只做粗略判断时,使用莱伊达法即可;判断精度要求不高,但要求快捷方便时,可以选用4d和中位数与算数平均数比较法。实际上,对于不用查表的方法大都比较便捷,但是代价是精度不够,且无法检验剔除水平,相反一些需要借助查表的方法精度较高但是计算复杂,各有利弊。
2.准确找出离群值
一般情况下,测量列中残差较大者就是疑似离群值,它也就是样本数据中的最大值或最小值
3.查找产生离群值的原因
已经判断为离群值的,即使是统计离群值,也不要简单剔除了之,应进一步分析产生离群值的原因。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30