
随着数据行业的不断发展,数据分析师这一职业变得越来越重要,而获得相关的资格认证也成为进入这一领域的重要途径。然而,对于准备参加2024年数据分析师考试的考生来说,了解考试的难度及通过率是非常关键的。
根据以往的数据,数据分析师认证的整体通过率较高,通常在70%左右。但这并不意味着所有级别的考试都如此轻松。实际上,不同级别的考试难度和通过率有显著差异。比如,在CDA数据分析师认证考试中,数据分析师(Level 1)的通过率约为75%,数据分析师(Level 2)的通过率为55%左右,而高级数据分析师(Level 3)的通过率则降至30%。随着级别的提升,考试的难度逐步增加,通过率也相应下降。
从这些数据中不难看出,数据分析师的考试并非一蹴而就,需要考生具备扎实的数据分析能力和实践经验。尤其是对于那些打算挑战高级别考试的考生,更是需要在理论知识和实操技能上投入大量时间和精力。
回顾我自己早年的学习经历,我当时为了通过一个数据分析认证考试,反复练习了多个数据建模项目,甚至参与了行业内的实习。尽管过程艰辛,但这段经历让我深刻理解了理论与实践结合的重要性。而这也是我对所有备考2024年数据分析师考试的考生的忠告:不仅要掌握理论,更要通过实践将知识内化为技能。
2024年数据分析师考试报名条件与流程
想要参加2024年的数据分析师考试,首先需要满足一定的报名条件和流程。以下是详细的报名要求:
• 学历要求:无要求。
• 年龄要求:一般要求年满18周岁。
• 工作经验:无要求。
• 其他要求:需要逐级考试,不能跨级考试。
报名流程相对简单,考生需要在线注册,填写相关资料,完成缴费并通过审核即可。一年之内选择考试时间和地点,线下上机考试。
考试内容涵盖了理论知识和实践操作,一级二级考试为客观题。客观题部分包括单选、多选,还有材料分析题,三级考试除了客观题外,案例操作部分则要求考生在120分钟内完成。2024年的考试时间也已经公布,每年3月、6月、9月和12月的第四周周六。
2024年数据分析师考试内容更新与变化
2024年,数据分析师考试内容将迎来多项重要更新:
随着考试内容的更新和考试形式的调整,考生需要在备考时更加注重知识的全面掌握和实际应用能力的提升。
如何有效备考2024年数据分析师考试?
备考2024年的数据分析师考试并不是一件轻松的事情。无论你是准备初级、中级还是高级认证,均需根据不同的级别采取相应的备考策略。
CDA数据分析师:
CDA数据分析师认证分为三个等级:Level I、Level II和Level III。每个等级的考试内容和难度各不相同。Level I主要涵盖描述性统计和基础数据分析技能,适合零基础的转行者和应届毕业生。备考时,考生可以通过在线课程、模拟考试以及参加公开课等方式,系统地掌握数据分析原理和工具。
通用备考策略:
无论你准备哪个级别的认证,保持良好的心态至关重要。同时,通过模拟练习熟练掌握知识点和考试技巧也是提高通过率的关键。
影响2024年数据分析师考试通过率的因素
影响2024年数据分析师考试通过率的因素多种多样,包括考生背景、考试难度、考试形式以及行业需求等。
考生背景:
考生的学术成绩、尤其是数学成绩,对考试通过率有显著影响。根据研究,大学数学第一学期成绩是学生成功攻读数据分析学位的最强指标。
考试难度:
考试难度的提升也是通过率下降的原因之一。数据分析师认证考试从每年两次的全国统考升级为随报随考,考试难度也相应增加。这种更高的要求使得考生需要更充分的准备。
综合来看,影响2024年数据分析师考试通过率的因素复杂多样。对于考生来说,最重要的是充分备考,不断提升自己的专业能力,最终在考试中取得好成绩。
推荐学习书籍
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18