
最近后台很多准大一的小伙伴在问大数据分析专业的相关问题,大数据专业学起来很累吗?就业前景怎么样?今天咱们就重点回答一下相关问题。
先直接来结论:学习大数据专业是有一定难度,因为大数据是一个比较典型的交叉学科,涉及知识面比较广,而且也有一定的学习难度,所以选择学习大数据还是比较辛苦的。
但如果你是真心喜欢大数据,未来想在大数据行业有所沉淀,我相信你会发现大数据魅力,未来前景也是很光明。
今天咱们主要讲这3部分:
01
大数据专业学习情况
各类学校的课程开设情况还是很不一样的,我们发现不同层次学校的开课状况也不同。
985高校大数据专业上课现状:
大一课就很多简直就是高四,一周十多节课天天早八,睡不了几天午觉,因为下午第一节也总是有课。因为课多,作业也多,大一两个学期都在和数学分析作斗争,一旦有一点没听懂,之后想跟上就非常困难了。每章作业都是正反面满满的好几张作业纸。期末也需要刷很多的题,找很多模拟卷做。和高三真的没有什么区别。
而且那些编程语言的课比如Java,c++光是理解清楚就很难了,学操作基本靠上机课。在自己电脑上装软件装了好几天,装好了莫名其妙的bug还特别多。期末大作业是设计小游戏,虽然给了两周时间,还是熬了很多的夜改bug,准备应对老师的提问。在这期间发现编程语言老师能给你讲的只是冰山一角,实际操作有很大一部分都是要自己上网查的。所以一定要有比较强的检索信息能力和自学能力。
二本三本院校学习现状:
学校的人才培养方案的通病:定位不清晰,我们专业其实在人工智能方向钻研深入一些。至于大数据相关技术,不得不承认教得比较粗浅。这是源于大数据相关知识比较难,需要大量知识铺垫才能理解,加之现在掌握大数据技术的老师较少(至少我们学校),大家都是现学现卖,教学质量不能说好。这种情况下,只能自己找出路,从网上找资源自学。
02
大数据专业的就业前景:
社会对大数据专业人才需求量激增,如今大数据人才呈现爆发式发展与严重人才荒并存的尴尬景象,中国人工智能人才缺口超过500万,大数据人才缺口高达150万。人才少,但是企业对于人才的需求却丝毫不减。最近几年大数据也将会是未来最有发展前景的行业之一。
大数据技术与应用专业市场需求旺盛,对应岗位有大数据开发工程师、爬虫工程师、数据分析师、数据科学家、数据挖掘工程师、机器学习工程师等;
薪资上,大数据入门月薪已经达到了8K以上,工作1年月薪可达到1.2W以上,具有2-3年工作经验的人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。
目前,大到世界500强,BAT这样的公司,小到创业公司,他们都需求数据人才。所以学习大数据专业的前景和形势客观来说是很好的。
03
学习建议
可能还会有些人觉得自己担心学不学得来,这里给一些参考点,符合下面特征的,不管男女都是适合学习大数据专业。
1.数学要学好
大数据专业需要有一定的数学基础,通识课部分就设置了三门数学课,统计学,计算机。建议考入大数据专业的童鞋,可以看看一些入门课,客观评估自己的数学能力,同时看下上面“数据科学与大数据技术专业简介”,如果数学能力很差,会造成挂科过多、学习压力过大、就业困难等不良后果。
2.有耐心有毅力
大数据专业和计算机专业比较像,是注重实践的专业。学生需要独立编写程序,对程序进行修改与调试,需要注意每一个细节才能顺利查错并运行程序。有耐心有毅力的学生显然更能坐得住,心浮气躁的学生则需要一番磨练才能成功。
3.提升自主学习能力
一般情况下,大数据专业无法向学生传授大数据核心技术之外的知识技能,如果学生需要进入全新领域去实习就业,就必须要迅速掌握新领域的相关知识。假如学生到金融行业从事数据挖掘工作,就必须对金融产品及用户有所了解。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10