
对于数据分析赛道的求职者,在面试过程中,有一些问题是必须要与HRBP来确认沟通的。在这些问题中,根据我多年职业咨询指导的经验,以下三个问题比较普遍,需要大多数数据分析求职者引起重视。
问题一:咱们公司有没有独立的数据团队?
通过这个问题,求职者可以准确判断目标企业数字化工作体系是否已经完成搭建,通常情况下,没有独立的数据团队的企业,入职后大概率需要单一的数据分析人员负责多部门的数据需求,最大的困难在于有些公司连基本的数据储备都没有,都是用最简单的报表来做各项数据的汇总,甚至大量没有任何逻辑关联的数据和信息直接用一个表格来汇总,数据人员还需要对历史数据进行整理,这个周期和难度会非常大,很多数据分析赛道的伙伴,都曾因为大量混乱的数据整理工作消耗过多精力,未能达到企业试用期考核要求的数据体系搭建进度。从而影响的KPI考评和转正。在此,强烈建议各位正在求职的数据分析伙伴,在得知目标企业没有独立的数据团队的时候,一定要谨慎入职。
尤其是成立很多年有一定规模的企业,没有独立的数据团队,说明内部管理和运营严重缺乏数据支撑,缺少符合市场动态的策略,很有可能已经出现发展停滞的情况。之所以需求数据分析人员入职,就是想短时间完成数据体系搭建和数据驱动,这类企业通常存在大量的冗杂历史数据,需要进行数据整理,风险比较大,数据整理需要大量时间和精力一旦企业不认同数据人员的工作安排很有可能出现短期劝退的情况;即便完成了数据整理的工作,初步确定了数据需求工作基本流程,也很有可能被中小企业给劝退,为别人做了嫁衣。
问题二:请问咱们公司有没有独立的数据中心/做数仓的人员/用BI产品…?
现实中很多公司只要是个码数的都会叫“数据分析”, 甚至很多企业对于数据分析岗位价值只认为是帮助销售提高销售额的助理类岗位。实际上差异非常大。核心区别看三个:有没有独立的数据团队,有没有人做数仓,有没有上BI产品。最好的情况是:有独立数据中心;数据中心内分数仓、BI、模型、数据治理、数据分析小组。这时候已经有人接专门的数据产品需求(BI小组)有人专门盯口径问题(数据治理)有人专门搞数(数仓小组)分析的主要职责就是接业务的需求然后屙SQL,一天至少2000行那种,输出常规报表,偶尔需要写写分析报告。至于驱动业务啥的其实干的很少,大部分业务部门的会是你的领导或者小组内资历深的员工去开的。这时候很考验你的领导的能与节操,如果你的领导能力好,节操足,他会和业务谈好分析需求然后给你清晰的指令,如果他能力不行,节操低,他会无穷无尽的PUA你,比如“你要多想想,你要发挥主动性,你要驱动业务呀不能光出数”然后虐得你死去活来……这就是为啥经常大厂的人也会抱怨生存很难,主要是领导不行。
最差的情况是:企业没有独立的数据团队,各个部门的数据独立管理,甚至连IT部门都没有(不要笑,很多入驻平台的电商团队就是这样,可能营业额做的很高了也是这样)所谓数据?不存在的,不是从各个电商平台后台导出(小电商团队)就是只有销售订单数据(大部分传统企业,toB型企业)然后你真的按照传统意义数据分析理论所言,从爬虫到建表,从跑数到可视化啥都一脚蹬,并且有大概率被业务吐槽数据不准被领导吐槽:“你都没有驱动业务?”如果你没啥经验,刚刚转行入门只能是硬忍着,干1年就跑,当然还有很多夹在中间的情况:比如你的岗位归属挂在市场部、战略发展部、业务管理中心这种业务部门,IT供数给你,你从BI导出数据或者下单让IT那边的SQLboy出数,主要责任就是写各种报告,固定更新 经营分析报告,领导提专题你来做,这时候其实主要考的是分析思路。对于结构化思维能力和业务逻辑理解能力会很看重。如果经过一段时间的适应,依然不能很准确的理解业务逻辑,建议直接换个行业,因为每个数据分析职业人只能是理解自己感兴趣或者能深度融入的行业业务,如果根本融不进去,千万不要强求。
还有一种情况,比如你在分公司,你没有取数权限,只能从BI导数然后粘贴进Excel发给各个销售团队,这时候就是标准的表哥表姐,赶紧的别犹豫到CDA数据分析师平台,系统学学数据分析全栈技术转行哈,否则干下去的话,真心没前途啊。
再有,比如你们公司可能有个数据小组,但是只有简单的销售数据统计,随着业务越滚越大,你需要不断学新东西,比如要上BI了,得了解下各家产品然后选型,比如要做APP,你得学埋点。
问题三:请问咱们数据分析类岗位,后期的职业晋升发展通道是什么?
通常情况下,数据分析岗位按照职业发展层次可以大体分为:数据专员、数据主管、数据经理、数据科学家。一个拥有完善的数据体系的企业,在每个层次上都会配比一定的岗位编制,为人才梯队的晋升做储备。但很多企业一入职是数据专员,工作了3年后岗位还是专员,没有任何晋升的可能,对于这类岗位只适合应届生或跨行的伙伴用来做入行过渡,一旦有了经验储备,马上选择更完善的企业。
比较好的情况是入职的时候为数据专员,伴随企业快速发展数据需求等级提升,从专员一路成长为数据科学家,这类企业通常是独角兽企业然后逐步发展成为行业的龙头。但对于独角兽企业需要仔细甄选,一旦选错了,直接会导致职业生涯之后滞后3-5年。通常情况,专业的市场调研、咨询管理、数据事务所等机构,都有完整的数据人才配置,专业为客户从事数据分析解决方案的平台都可以做为数据分析赛道职业人理想的技能成长平台选择。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14