京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS与Streams的集成实现实时预测
SPSS Modeler 是一个数据挖掘工作台,提供了一个可了解数据并生成预测模型的最先进的环境。Streams 提供了一个可伸缩的高性能环境,对不断变化的数据进行实时分析,这些数据中包括传统结构的数据和半结构化到非结构化数据类型。
在实时处理需要高级分析时,使用Streams和SPSS集成,实现实时评分预测。实时应用预测分析的用例的示例包括网络安全、银行和信用卡欺诈检测、预测性维护,以及实时营销产品。
Streams + SPSS Analytics Toolkit 的特点
利用Streams实现高吞吐量、低延迟的评分
利用SPSS Modeler开发和建立评分模型
通过SPSSScoring Operator将模型部署到Streams
模型更新而无需暂停Streams
通过SPSS Collaboration and Deployment Services管理模型的生命周期
SPSS Analytics Toolkit for Streams
SPSSScoring operator
SPSSScoring operator实现在Streams应用中使用预定义的SPSS的预测模型进行评分预测,它假设预测模型已经在SPSS Moduler定义好并通过SPSS Solution Publisher导出这三个文件:
model.pim
model.par
model.xml
SPSSScoring 代码例子
stream<DataSchemaPlus> scorer = com.ibm.spss.streams.analytics::SPSSScoring(data) {parampimfile: getThisToolkitDir() +"/etc/PimParXml/model.pim"; parfile: getThisToolkitDir() +"/etc/PimParXml/model.par"; xmlfile: getThisToolkitDir() +"/etc/PimParXml/model.xml"; modelFields:"sex","income"; streamAttributes: s_sex, baseSalary+bonusSalary; output scorer: income = fromModel("income"), predLabel = fromModel("$C-beer_beans_pizza"), confidence = fromModel("$CC-beer_beans_pizza"); }
SPSSPublish operator
SPSSPublish operator 自动“发布”的一个模型文件的评分分支并总结所生成的文件,以便下游的Operator可以通过“分布”操作所创建或更新的PIM、PAR和XML文件,刷新他们的评分标准实施。通常情况下,SPSSPublish operator配合上游的DirectoryScan 或 SPSSRepository operator,及下游的SPSSScoring operator,即:
DirecoryScan/SPSSRepository -> SPSSPublish -> SPSSScoring
其中DirectoryScan 或 SPSSRepository operator检测到有新的模型文件可用,就将新模型的文件名发生个SPSSPublish operator。SPSSPublish的下游通常是SPSSSoring。当SPSSPublish获取到新模型,它就会生成SPSSSoring所需的PIM、PAR和XML文件,然后发生通知给SPSSSoring,通知也新的模型可用了。SPSSScoring收到通知后会刷新内部模型。
SPSSPublish代码例子:
stream<rstring strFilePath> strFile = DirectoryScan(){
param
directory : "/tmp";
pattern : "newmodel.str";
ignoreExistingFilesAtStartup : true;
config placement : host(P1);
}
stream<rstring fileName> notifier = com.ibm.spss.streams.analytics::SPSSPublish(strFile){
param
sourceFile: "newmodel.str";
targetPath: "/tmp";
config placement : host(P1);
}
stream<DataSchemaPlus> scorer = com.ibm.spss.streams.analytics::SPSSScoring(data;notifier) {
param
pimfile: getThisToolkitDir() +"/etc/PimParXml/model.pim";
parfile: getThisToolkitDir() +"/etc/PimParXml/model.par";
xmlfile: getThisToolkitDir() +"/etc/PimParXml/model.xml";
modelFields: "sex","income";
streamAttributes: s_sex, baseSalary+bonusSalary;
output
scorer:
income = fromModel("income"),
predLabel = fromModel("$C-beer_beans_pizza"),
confidence = fromModel("$CC-beer_beans_pizza");
config placement : host(P1);
}
SPSSRepository operator
SPSSRepository operator监视部署在SPSS Collaboration and Deployment Services库的对象的变化。当被监控的对象发生变化,相关通知则会发给所有的Listener。收到通知,SPSSRepostory会从Repostory下载该对象的新版本文件并将文件写到目标目录,这步操作成功之后,SPSSRepostory再提交描述文件已更新的事件给下游Operator。
Streams + SPSS 的参考架构
根据前面对SPSS Analytics Toolkit的功能描述,Streams + SPSS的参考架构可以由下图表示:
小结
本文通过对SPSS Analytics Toolkit和这些Toolkit与Streams集成参考架构的描述,为读者呈现了如何使用业界最好的数据挖掘工具SPSS和流数据分析平台Streams进行实时评分和预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16