Pandas json_normalize 函数使用教程介绍
json_normalize 是 Pandas 库中一个强大的函数,用于将嵌套的 JSON 数据规范化成平面的 DataFrame。这对于处理包含嵌套结构的 JSON 数据非常有用,使其更容易分析和操作。在本教程中,我们将深入介绍 json_normalize 函数,并通过通俗的例子帮助你理解其参数的作用。
安装 Pandas
首先,确保你已经安装了 Pandas。如果没有安装,可以使用以下命令进行安装:pip install pandas使用 json_normalize基本用法让我们从最基本的用法开始。假设有如下嵌套的 JSON 数据:{
"name":"John",
"age":30,
"address":{
"city":"New York",
"zip":"10001"
}
}
}
现在我们将使用 json_normalize 将其规范化成 DataFrame:import pandas as pd
# 嵌套的 JSON 数据
data = {
"name": "John",
"age": 30,
"address": {
"city": "New York",
"zip": "10001"
}
}
# 使用 json_normalize 规范化
df = pd.json_normalize(data)
# 打印 DataFrame
print(df)
print(df) 运行上述代码,你将得到一个包含规范化数据的 DataFrame。处理嵌套数组json_normalize 也可以处理包含嵌套数组的 JSON 数据。
考虑以下 JSON:{
"name":"John",
"age":30,
"skills":[
{"language":"Python", "level":"Intermediate"},
{"language":"JavaScript", "level":"Advanced"}
]
}
}
我们可以使用 record_path 参数指定要规范化的嵌套数组:# 嵌套数组的 JSON 数据
data_with_array = {
"name": "John",
"age": 30,
"skills": [
{"language": "Python", "level": "Intermediate"},
{"language": "JavaScript", "level": "Advanced"}
]
}
# 使用 json_normalize 规范化,指定嵌套数组路径
df_with_array = pd.json_normalize(data_with_array, record_path='skills')
# 打印 DataFrame
print(df_with_array)
通过指定 record_path 参数,我们将嵌套数组规范化成了 DataFrame。处理嵌套 JSONjson_normalize 还支持处理嵌套的 JSON 结构。
考虑以下 JSON: {
"name":"John",
"age":30,
"contact":{
"email":"john@example.com",
"phone":{
"home":"123-456-7890",
"work":"987-654-3210"
}
}
}
我们可以使用 sep 参数指定嵌套层次的分隔符:# 嵌套 JSON 数据
data_nested = {
"name": "John",
"age": 30,
"contact": {
"email": "john@example.com",
"phone": {
"home": "123-456-7890",
"work": "987-654-3210"
}
}
}
# 使用 json_normalize 规范化,指定嵌套层次分隔符
df_nested = pd.json_normalize(data_nested, sep='_')
# 打印 DataFrame
print(df_nested)
print(df_nested)在这个例子中,我们通过指定 sep 参数,将嵌套的 JSON 结构规范化成了 DataFrame。
总结
通过本教程,你学习了如何使用 Pandas 中的 json_normalize 函数将嵌套的 JSON 数据规范化成易于处理的 DataFrame。我们介绍了基本用法以及如何处理嵌套数组和嵌套 JSON 结构。希望这些通俗易懂的例子能够帮助你更好地理解 json_normalize 函数的使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03