京公网安备 11010802034615号
经营许可证编号:京B2-20210330
导读:在竞争中,了解对手是至关重要的。无论是个人的职业规划还是企业的战略规划,都需要对竞争对手进行深入的分析。在业务领域,了解竞品的商业模式和营销渠道等同样重要,通过对比和剖析,找到自己的优势和机会,从而在竞争中占据有利地位。这就是竞品分析的核心思想。
1. 什么是竞品分析竞品分析是对竞争对手的产品进行全面、多角度的分析,旨在识别自己与竞品的优势和劣势,找到产品的增长点和改进点,发挥自己的长处,弥补短处,并关注市场环境的变化,帮助公司在日益激烈的竞争环境中找到最合适的方向或做出前瞻性的布局。
2. 竞品分析的基本思路
1)明确分析目标首先要明确竞品分析的目标。不同的目标意味着不同的侧重点。例如,如果目标是提高销售额,那么应该围绕营销策略等内容进行分析,结合自己产品的客户特点,优化营销方式,提高营销效果。又如,如果想确定是否进入某个领域,可以选择几个主要竞品进行横向对比,研究市场规模、竞争态势、产品差异等因素,预测行业发展趋势,从而决定是否进入。
2)筛选竞品在选择竞品之前,首先要了解竞品的分类:直接竞品、间接竞品、替代品、参照品。然后根据分析目的进行筛选。不是所有的竞品都值得分析,而是要选择有价值、有深度的竞品进行分析。
3)确定分析维度竞品分析是一个系统的过程,需要提前构思从哪些方面、哪些角度进行分析。例如:
- 产品层面:从产品定位、功能、技术、体验等方面进行分析,找出产品的优势和不足,确定核心竞争力和优化方向。
- 用户层面:从产品用户的画像特征进行分析,找出与竞品用户群的不同之处,分析原因和可能拓展的用户群体。
- 营销运营层面:从营销和运营的角度出发,比较竞品的营销和运营模式的差异,取其精华,结合自身业务特点,找到适合自己的营销和运营策略。
4)收集竞品信息可以通过多种途径获取竞品信息,如官方渠道公开资料、第三方竞品平台、用户调研、互联网行业指数等。常见的信息来源包括行业网站、咨询公司的行业报告、行业内的意见领袖的社交媒体账号、知乎上关于相关行业的提问和回答等。此外,还可以通过参与行业社群了解行业整体概况,或者“打入竞品的用户社群”去了解特定竞品。在与用户交流的过程中,要注意适度看待用户对产品的看法,同时询问他们是否使用过其他同类产品,以及他们的体验和感受。此外,还可以长期使用竞争对手的产品,关注对方员工的社交媒体账号等。这些信息通常会透露出竞争对手未来的发展方向和业务情况。最后,还可以参考与行业相关的专业书籍、杂志等资源。
5)确认分析方法信息收集完成后,需要对其进行筛选、分类、剔除、评级等处理,提取有效信息,并对有效信息进行分析。不同的分析目标需要选择不同的分析方法,常见的竞品分析方法包括精益画布、用户体验要素分析法、比较法、四象限分析法、PEST分析、波特五力模型、SWOT分析等。
6)输出分析结果根据上述信息和分析结果,得出客观的结论,并对这些结论进行解读。从产品改进、市场发展、公司策略等方面提出相应的、可执行的、全面的建议方案或报告。需要注意的是,市场竞争异常激烈,数据造假的情况并不少见,因此在数据采集和结论推断时必须谨慎,必要时要从多个角度进行交叉验证。另外,对于数据和观点的描述要尽量客观公正,避免主观判断影响决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27