
如何精准使用大数据
大量全面的数据是精准品牌营销的基础,企业首先要收集用户数据,建立庞大的数据库,为品牌精准投放铺垫。在数字化时代,我们上网购物、看视频、听音乐、玩游戏甚至沟通交流都会留下印记。企业可以从各渠道收集多种类型的数据,让品牌的市场调研样本更加全面。
1、收集多类型数据
企业收集到的数据是纷繁复杂的,但主要包括以下三种:
第一类是人口统计学上的基础数据,包括年龄、性别、所在地、职业、文化水平、收入等,譬如在任何一家银行进行开户,客户都会在开户申请表上看到职业和收入这两项,对于银行而言获取足够的存款是至关重要的,收入意味着客户现有的资金水平,职业则暗示着潜在的经济实力,银行可以通过这两项人口统计学上的基础数据筛选重要的目标客户。
第二类是消费者偏好的数据类型,主要有消费者浏览的商品种类,购买过的产品,重复购买的频率,经常访问的网页,页面访问时间和停留时间等等,根据这些数据可以到消费者的购物习惯和兴趣爱好,方便企业更深入的洞察消费者。
第三类是消费数据,主要是指由购买行为产生的数据,包括消费者购买的产品规格数据和商品价格数据,日常生活中在超市结算时的二维码扫码和商场的POS即是收集此种数据的方式。
2、收集多来源的数据
企业数据收集是多渠道的:
一方面是企业内部的数据,企业网站浏览和点击、POS终端交易数据、站内SNS社交数据、企业微信公众平台以及移动设备产生的数据。在2013年,迪士尼推出了My Magic+服务项目,项目通过嵌有迷你芯片的可穿戴设备手环服务游客,手环与手机应用捆绑在一起,可储存门票、借贷卡信息,也可以作为酒店钥匙使用,甚至只要有感应的地方都可以使用,由此迪士尼公司可以收集到游客游玩地点、住宿以及支付等相关数据,这是企业通过自有设备进行内部数据收集的表现;
另一方面的数据则来自企业外部,主要指网页广告点击、搜索引擎的搜索数据以及相关性的超链接数据,大部分资金不足或技术不成熟的企业会采用此种数据收集方式,这些企业自身没有条件开发自己的数据收集系统,从而借用第三方平台收集数据。
以数据为基础的精准营销是以技术的提升为前提的,目前常用的数据收集技术主要有消费者追踪的cookie技术和网络爬虫技术。企业或第三方平台通过Cookie技术锁定用户ID,譬如微博、微信、QQ账号,也可以是IP地址,追踪网络足迹,用户浏览了何种网页,看了何种视频,页面和视频停留时间的长短都能获得可量化的数据。网络爬虫则会根据企业设定的标准和规则,自动抓取万维网信息的程序或脚本。
企业数据收集数据的多样性、广泛性以及数据抓取技术的成熟使精细化成为可能;首先,在传统市场调研中消费者的分散性迫使调研者舍弃全员调研采取抽样调查的方式,抽样要求样本的随机性,而真正意义上的随机很难保证,由此调研结果存在偏差,但在大数据时代市场调研是全体样本,企业可以通过技术手段收集到所有数据,确保了样本的全面性,利于消费者或市场细分更加精细。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04