
大数据金融对传统金融有何影响
互联网金融未来发展的一大趋势是大数据的应用,而这也改变了人们对金融本质的传统认识。此前学界广泛认为金融的本质是中介,还有人认为金融的本质是对风险的控制与管理,然而随着互联网金融的发展,已经有人开始对金融进行重新定义,金融就是大数据。
从融资模式看,现代金融有两种模式,一种是银行模式:存款、贷款、支付,一种是资本市场模式。资本市场模式就是直接融资,通过交易所进行股票交易。互联网金融既不走银行模式,也不走资本市场交易所模式,它有可能是所有的存款人和所有的借款人,通过互联网平台直接交易。未来通过互联网走直接金融的模式,不需要资本市场,也不需要银行。
从支付模式看,有移动支付和第三方支付。第三方支付在中国的典型是支付宝。我们现在的支付模式是银行支付模式:个人在商业银行开户,商业银行在中央银行开户,解决各家银行之间的跨行清算,而支付宝颠覆了这个模式。
现在已经有一些公司给员工发工资直接打到支付宝,员工用支付宝支付,然后转账到别人的支付宝,这样的话,在银行体系之外构成了支付体系。微信5.0 支付也是这个模式。第三方支付未来完全有可能在银行支付系统之外创造一个新的支付系统。银行卡支付被手机支付替代;POS机刷卡被扫二维码替代。
所谓对传统金融的彻底颠覆,一个很重要的表现形式是大数据的征信和网络贷款:根据企业的行为数据计算出企业可能违约的概率,在这个基础上进行贷款(B2B是典型)。当前典型的是阿里小贷等。未来大数据的保险也是这样的:根据行为的数据进行保险差别的定价。比如未来的车险将根据个人生活、工作、习惯所有大数据的基础,给出事故发生的概率,然后给出保险的费率。这种模式完全颠覆了现在保险费率的模式。
P2P网络贷款,也是互联网金融的模式。P2P网络贷款是债权,众筹融资就是解决股权问题。如通过众筹模式解决小额风险投资问题,美国已经规定这种模式是合法的。大数据在证券投资中的应用也将非常广泛。互联网金融,
尤其是搜索引擎、云计算使人们收集了大量的数据,这些数据在证券投资当中将发挥很大的作用,而且现在它对股价的预期非常有用。
从形式上讲,互联网对传统金融的彻底颠覆表现形式是大数据的应用,本质上是根据科斯定理,金融机构作为中的价值或许会消失。假设整个金融市场互联网化,那么现在的银行机构、证券机构、保险机构的金融中介作用将会弱化甚至消失,取而代之的可能是基于大数据的直接金融交易。
假设整个金融市场互联网化,包括支付清算体系、金融产品金融工具、风险评估与定价、期限匹配数量匹配都互联网化,这样交易成本将极低,基于互联网技术的金融市场效率就非常高了。现在我们大量的金融市场的交易存在信息不对称,大量信息不对称引起交易成本非常高,也使得金融成为专业性很强的精英行业。然而未来金融神秘的面纱或许会揭开,普通百姓也可以很轻松进行现在看来很复杂的金融交易,就像现在下载一个APP应用一样下载使用金融产品。金融网点的消失可以使金融系统人力资本、营运资本大大降低。假设互联网支持了金融市场,完全互联网化的话,完全是供求方和需求方直接交易,交易成本会减少很多,这就是科斯定理。
互联网金融在2013年发轫,对金融的影响是颠覆性的,它将改变人们对金融传统的部分认识与观念。但是金融在未来将回归它的核心本质。未来变的不是金融的核心定义,而是现在的股权、债权、保险、信托等这些金融产品的契约形式,变的是金融监管的与时俱进。
案例: 阿里小贷以“封闭流程+大数据”的方式开展金融服务,凭借电子化系统对贷款人的信用状况进行核定,发放无抵押的信用贷款及应收账款抵押贷款,单笔金额在5万元以内,与银行的信贷形成了非常好的互补。阿里金融目前只统计、使用自己的数据,并且会对数据进行真伪性识别、虚假信息判断。阿里金融通过其庞大的云计算能力及数十位优秀建模团队的多种模型,为阿里集团的商户、店主时时计算其信用额度及其应收账款数量,依托电商平台、支付宝和阿里云,实现客户、资金和信息的封闭运行,一方面有效降低了风险因素,同时真正的做到了一分钟放贷。
京东商城、苏宁的供应链金融模式是以电商作为核心企业,以未来收益的现金流作为担保,获得银行授信,为供货商提供贷款。阿里小贷有一些传统商业银行无法比拟的比较优势:首先,授信成本非常低廉,效率较高。传统银行中以民生银行为例,尽管民生银行可以通过大数定理等方法批量化处理信贷项目并因此降低授信成本,但是阿里小贷却正在重塑另一种信用评价体系和信用概念,通过大数据分析客户交易行为数据和借款人的经营与信用特点,直接产生客户征信记录,大幅降低客户筛选成本,同时申请流程非常便捷且放款速度较快。
第二,风险识别能力更强,丰富借款者类型。过去,由于缺少一套针对小微企业的风险识别工具,商业银行在小微企业上风险收益比较低,而阿里小贷则凭借数据分析的优势,建立了若干个测量个体风险及个体利率敏感度的模型,覆盖了贷前贷中和贷后,对每个客户区别对待寻求最优定价策略,有效的进行风险成本全覆盖。截止2014年
2月,尽管阿里小贷累计投放贷款已经超过1700亿元,服务的小微企业超过70万家,但是不良贷款率却仍然不到1%
,显示阿里的小贷业务风险配置能力较为突出。第三,无需缴纳存款准备金,不受存贷比限制。银行放贷主要依靠的是客户存款,具有信贷投放的意味,而阿里小贷的贷款主要依存于沉淀在平台内的大量无息结算资金,不需要缴纳法定存款准备金,也没有存贷比和风险资产计提的要求,这可以被视为一种监管套利,不过随着交易量的增加,日后监管层出台防范风险的举措可能性较大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01