京公网安备 11010802034615号
经营许可证编号:京B2-20210330
工业大数据将如何推动制造业转型升级
工业大数据,很难从内涵角度来作出一个定义,因为它涉及到很多各种各样的数据。但从外延角度来看,比较容易。
大体上是3+3,第一个“3”是指3个层面——企业,企业上面的供应链、产业链和生态链,以及在这上面的行业管理和宏观经济。第二个“3”是指每个企业都有的3个过程——生产,使用,以及发展中的经营效益,所以,“3+3”基本上把工业大数据的脉络圈起来了。
从企业的角度看,工业大数据是在一个企业的设计、创新、生产、经营和管理决策过程产生、使用和转型升级过程需要的信息之和。所以最小的圈是企业,一个企业从开始到生产线到设计、到工艺过程、到人,一直到管理、决策、市场、服务,像这样的环节都在使用。
从供应链、产业链和生态链的角度来看,工业大数据是供应链、产业链和生态链产生、使用和需求的各类信息之和。这三个链之间很难一刀断开,因此,我也是从一个概念来看。所以,制造业也好、工业企业也好,整个过程是一个链环周。这个链不仅是一个企业,更重要的是政府机构、研究机构,需要把控和研究如何追求制造业前两环的优化。所以我们看到了超越一个企业的生存、使用和发展需求的新工业数据。
从行业管理和宏观调控的角度来看,工业大数据是工业行业管理和宏观调控产生、使用和需求的各类信息之和。每一个行业的管理都需要工业大数据,在工业行业又生存了很多企业,做好工业数据管理需要这样一个链条,所以“3+3”构成了工业大数据的外延,每一个环节,使用的和需求的中间是交集,这样才对工业大数据的发展提供了基础。
小结
首先,3+3加起来的组合就是工业大数据;
第二,产生、使用和进一步发展的需求的工业大数据是不同的,是交集;
第三,进一步发展需求的大数据最大;
最后一句话最重要,工业大数据,工业是主体。
为什么要发展工业大数据?
同样是三个层面,从三个由小到大的层面,加上一个需求,来看一下工业大数据的作用和意义。
首先,从最小的层面——企业来看,工业大数据为企业全过程设计、创新、生产、经营、管理、决策服务,为企业的发展战略和目标的实现服务。
第二个层面,工业大数据服务于供应链的优化、产业链的完善、生态链的形成和优化。从供应链、产业链、生态链来看,不管是CSM的生产圈,还是一个特定产品制造过程的供应链,或是一个完整生产过程的分析,工业大数据都是为了它的形成和优化。
第三个层面,工业大数据要满足行业和宏观决策调控的实际需求,提高行业和宏观经济管理决策质量、能力。政府的行业管理对于供应链、产业链、生态链、商业链、价值链有着非常重要的作用,但是政府的宏观调控超越了这样的链环本身,我们要对经济发展面临的重大问题作出回应,甚至回答制造业如何来应对这样的问题。所以从这个行业来看重要的是行业发展战略,而到宏观调控的时候,不但要从行业的发展战略,还要从整个经济发展去看这些问题怎么解决?这就需要信息。
第四,从工业转型升级的需求看,工业大数据是为了一个个企业、行业、装备、工艺、生产线、供应链的转型升级服务。先进制造业、工业4.0、智能制造,以两化融合和智能制造为重点的中国制造2025,都是工业转型升级模式的未来方向。原来我们的3.0工业,是以装备和生产线为核心的自动化,而4.0的智能化是把这两个过程自动化和数据自动化结合在一起。
小结
工业大数据的研究和实践要服务于加快制造业转型升级、提升工业竞争力;
这个目标要落实到企业创新、设计、生产、经营、管理、决策的每一个具体环节;
这个目标要落实到供应链全局优化、产业链和生态链的形成和优化的每一个具体环节;
这个目标要落实到工业行业管理和宏观经济调控决策的每一个实际需求。
工业大数据怎么推动制造业转型升级?
在回答怎么办之前,首先要知道存在着哪些主要问题:
1、在数据生成环节,主要存在跑冒滴漏和非标准的问题;
2、在数据利用环节,主要存在数据不足、质量不高、各个环节协同存在制度、核算、标准等大量障碍;
3、在发展需求环节,主要存在缺乏预见性、缺乏有效的模型和工具、缺乏制度和标准规范等问题。
要想建设好、应用好大数据,首先要解决这三个问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01