以下文章来源于接地气的陈老师 ,作者接地气的陈老师
经常有同学抱怨,说自己做的活动分析被人DISS,诸如:“分析不深入”“没有可落地结论”之类的批评。注意!并不是谁闹谁有理。有时候来自业务部门/面试官的批评是没道理的,要认真区分情况再说。一、活动分析的基本做法活动分析,有标准四步走:1、目标制定:清晰活动目标2、过程监控:监控活动执行3、结果复盘:看目标达成了没有4、过程诊断:如未达成,则回看执行过程,查找疏漏点。
做活动本身是一个“指哪打哪”,高度目标导向的事情。因此活动分析中,目标是最关键的,清晰了目标才好判定效果。活动过程监控,则是用来诊断问题的,一般采用漏斗分析法+对比分析法,看哪个环节掉链子。
比如针对1万名新用户派特定品类的优惠券,目标拉动其中5000人消费。活动流程,则是新用户登录后通过弹窗领券,之后进行消费。那活动分析,就先看是否有达成5000消费的目标。如果没有达成,再看哪个环节没做好。是派的券压根没人领,还是领了券没地方用(如下图)。
注意!活动是分三类的:类型一:为了提升总业绩,比如双十一,618。这种一般是冲量型活动,投入力度大,参与商品多,有可能分子活动。因此一般是看整体业绩目标是否达成。
类型二:为了达成特定目的,比如清库存。都已经到尾货期了,能多清一件算一件。这种时候一般不计较收益,而是达成目标即可。
类型三:为了定向提升收益,比如针对特定用户投一批优惠券,拉升消费。这时候一定要考核收益,不能让人白薅羊毛。最好直接设参照组,观察有/无活动时差异。如果不能设参照组,则一定要记录该群体活动前数据,作为对比。
虽然活动分析都是:“目标→执行→复盘→过程诊断”四件套,但是根据不同的类型,目标设法有差异,复盘方式自然也有差异,不能一锅炖。然而有些时候,恰恰业务部门自己脑子不清醒,导致活动组织混乱。这时候要是怪数据分析师做得不好,就是无理取闹了。二、典型的无理取闹问题一:提升总业绩的活动,不设总体目标。一张嘴“我做活动就是为了提升业绩,分析下我提升了多少”——废话!肯定是为了提升业绩呀,难不成为了减少吗。问题是,你要提升多少?不同的目标,投入力度,活动形式,宣传渠道都有差异,事先不考虑,事后咋复盘。
问题二:不事先考虑自然增长率。实际上,很多业务本身有自然波动,肯定要提前考虑呀,不然活动咋组织。而很多业务,活动方案就是不知道哪抄来的。这些业务事前不考虑周全,事后抓住数据分析师,拼命研究“自然增长率的800种算法”,企图通过修改自然增长率来起死回生……真是让人哭笑不得。
问题三:活动前不做基础准备。活动页面不埋点,活动编码随便写,活动券码瞎胡用,派券对象随意增删。上活动的时候只图快!省事!数据一塌糊涂,事后……事后分析个屁。
问题四:定向提升的活动,不设参照组。定向提升型活动是完全可以设参照组的,如果不设参照组,是很难看出来活动增量效果,自然没法深入分析。
问题五:设参照组不考虑特征差异。参照组不是随机拉一波人就成的,而是要考虑“哪些特征会影响结果”。比如已知高消费人群活动响应会高,则设参照组时,需保证参照组内高消费群体比例和活动组差不多,这样才有可比性。不然结果肯定不对。三、常见的自掘坟墓当然,也有些是数据分析师们自己惹祸,常见的,比如:
惹祸一:不管业务场景,强行上模型。我就见过有数据分析师拿营销费和GMV做回归分析,然后拿R平方值来解释营销活动“效果”的。被人怼了还说这些人不懂统计学,额……
惹祸二:主动配合业务事后算“自然增长率”。结果不管你咋算,业务都不满意,终于业务满意了,老板不满意!搞得自己里外不是人。
惹祸三:不找业务要目标,企图用各种奇怪的东西代替目标。
实际上,在活动分析中,业务惹的麻烦要比数据分析师多得多得多得多。大部分的问题,都是业务自己目标不清晰、考虑不周全、事先没准备所导致的,数据分析师要做的,更多是不要纵容这种瞎搞。如果条件不充分,就先给一些基础数据,同时反复向大家灌输正确做法。
有趣的是:老板是站在我们这边的。老板也讨厌业务事前不动脑子,事后乱找理由。所以大家一定要有信心,慢慢推动活动评估标准化,正规化四、更深入的做法当然,即使以上都做了,单凭一次活动,也有可能分析不出很深入的东西。因为一次活动能影响用户范围有限,给到用户选择也很少,所以很难充分了解到底是产品不行,活动设计不行,还是用户没需求。这种深入的洞察,是需要多次活动数据摆在一起看,才能发现的。
以下这些场景,都得至少做2次以上,才能在对比中发现问题。比如:
其实很多时候业务自己也是被逼的。有些公司缺少长期计划,业务总是为短期业绩下跌填坑。这时候,业务自己也没空想更多办法,只能每次都用老一套,事后再指望修改“自然增长率”为自己找理由。因此,做规范的活动分析,也能帮业务减负,让业务有合理的理由多做几次尝试积累经验,最终大家一起探索出切实可行的办法。
当然,不指望所有公司都有这么好的氛围,如果你在的公司,就是目标不清晰,活动方案抄抄改改,事后纠结自然增长率。那至少我们自己,可以把活动分好类,然后观察事前/事后差异,观察对大盘影响,这样积累的经验,也能用在下一家公司。
扫码添加老师微信,一起做数据分析达人!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03