京公网安备 11010802034615号
经营许可证编号:京B2-20210330
信用大数据 大数据信用体系 大数据信用体系建设
大数据开辟信用体系建设新路径
数据怎么体现出它的价值?最直接的体现叫数据变现。数据能不能跟金融对接起来,就是一个最直接的价值体现。
信用现在是一个高频词,如果不把这个基石重新建立起来,重新给它做踏实了,经济是没法往下走的。
西方信用体系的建立,约束的是结果,是约束“信”这个字。守信了,就得到了一个好的结果,失信了,就得到一个坏的结果。信用,另一个字是“用”,“用”是什么?我们认为它是个体创造财富的能力。如果我们把现在所谓的风险前置管理,或者是创造财富的能力量化,能把这件事情说清楚了,我们就能够走一条新的信用体系建设的道路。
量化,要从数据入手。不是所有的数据都有用,互联网上大量的数据都是垃圾,数据怎么体现出它的价值?最直接的体现叫数据变现。数据能不能跟金融对接起来,就是一个最直接的价值体现。另外,供应链里的数据含金量也非常高,它是一个企业核心的数据。
让大数据成为信用建设的“矿产资源”
全国人大代表、浪潮集团有限公司董事长孙丕恕在今年两会期间,提出了依靠大数据、建设征信体系的建议。他希望政府在制定宏观政策,建立征信法律法规的基础上,大力推进政府数据和机构数据等不同数据源的开放和共享,充分利用大数据技术,整合利用好各方数据。此前多年,他一直呼吁提升中国信息安全保护水平、完善中国信息安全保障体系等方面的建设。
在孙丕恕看来,大数据丰富了信用数据的数据源,不再局限于传统的金融领域数据,更基于交易数据、公共事业数据、商业信用、社会信用等多方面的数据来综合评判信用主体。数据的开放和整合是必经之路,大数据技术是有效支撑。
经济观察报:大数据在建设社会信用体系方面作用很大,但推进难度也不小,存在一些瓶颈。
孙丕恕:随着电子商务、移动互联等技术的发展,商业社会和人民群众的数据信息成为信用建设的重要“矿产资源”,尤其是大数据技术的应用,极大拓展了数据源的广度和深度,大幅提高了授信效率和信用评价的全面性、完善度等。因此,建设高效全面的社会信用体系需要充分发挥大数据的作用。
经过30多年的发展,中国已形成金融信用信息基础数据库及征信机构,依托央行也初步建立了个人征信数据库。同时,新兴的互联网公司依靠聚集的大量企业和个人的数据资源,也涉足金融和商业征信领域,成为征信市场的新兴力量。依靠大数据技术融合不同数据源、进而打造信用数据处理能力和信用产品并推广应用,成为创新社会信用体系的突破口。
大数据在信用体系建设方面的探索和实践
本干货出自2015年4月8日,金电联行(北京)信息技术有限公司执行副总裁艾小缤在清华-青岛大数据工程研究中心启动仪式暨大数据产业高峰会上所做的《大数据在信用体系建设方面的探索和实践》的演讲,这是该系列干货的第一篇。
演讲正文:
大家下午好。今天非常荣幸,其实这也是我近期第五次来青岛,之前来了几次,尤其是去年清华办了一个大数据峰会,当时也是我来讲。经过了这一段时间,我相信其实现在大家对大数据的认识越来越充分,越来越深入,包括今天上午,各位专家都讲了很多。我们现在可能对大数据感觉不陌生了,但是我们跟在座的各位有什么关系呢?我觉得在大数据这个时代,这个可能是我们所有人更关心的一个问题。
先说说信用。互联网+大数据,我们说互联网+的概念,但实际上我们说大数据本身也是一个很底层的,我们很有可能在后面会产生大数据,其实已经产生了很多大数据+金融、大数据+房地产、大数据医疗,它跟互联网有什么不一样的地方呢?我觉得互联网在前面,互联网实际上是影响了我们整个的生活,它的影响我们其实还能够接触到,还能够理解到,但是大数据的影响,我估计现在可能大家还没有真正接触到,甚至只是听说它对我们生活有哪些影响。今天我来讲一讲大数据在信用体系建设和在金融领域方面有哪些应用,这些跟我们有哪些关系。
大数据监管的信用力量
前段时间,国办印发了《关于运用大数据加强对市场主体服务和监管的若干意见》,全文出现大数据一词61次,出现信用一词94次,尤见信用和大数据之间的紧密关系。我们理解,实施信用的基础是信息,信息是来自数据的加工。
前段时间,国办印发了《关于运用大数据加强对市场主体服务和监管的若干意见》,全文出现大数据一词61次,出现信用一词94次,尤见信用和大数据之间的紧密关系。我们理解,实施信用的基础是信息,信息是来自数据的加工。
大数据是基础、是工具,信用是应用、是方式。让市场充分发挥资源配置的优势和作用,缺乏信用是万万不行的。
首先,大数据在哪里?无非是履职过程中掌握的数据,包括登记机关掌握的法人和其他组织的登记信息,自然人的登记信息。另外一块就是行政许可、审批、行政处罚、行政强制、行政征收、行政给付、行政裁决、行政确认、行政奖励、其他行政权力,包括一些财政专项资金分配、审核转报、行政调解、行政监督检查、行政复议等。均是客观反映行政相对人的记录。
征信大数据:我的信用,我来决定
你曾经试过信用卡逾期未还款吗?如果我告诉你逾期还款三次以上,会影响你日后贷款的利息,你可能就不会轻易忘记还款了。信用分数一直是个黑盒子,人们不知道自己为何会得到这样的评分,得不到适时反馈的结果是我行我素,甚至自暴自弃算了。
每一次我们悔不当初的时候,心里总会想:早知道就好了。其实,眼下大部分的现实反馈都是滞后的:等体检才知道“三高”,等完全失眠才知道喝太多咖啡有问题,而这时候再采取弥补和改正的措施可能已经晚了。未来,大数据可以帮我们“早知道”一点吗?进一步讲,未来大数据可以帮助我们迅速纠正错误的判断和行为吗?答案必然是肯定的,因为大数据的内涵来自量化与关联,但价值最容易体现的是准确的反馈基础上得到的预判。
现实中已经有很好的例子,比如健康手环,实时的收集生活活动包括走路、休息、睡眠、心率等数据,让我们更好地自律,更健康地生活。根据这些数据的反馈,我可以马上采取修正行动。
今天为大家介绍的一家创新金融公司是一个打破“信息黑盒子”的真实案例。这家公司叫Credit Karma,他们的业务完全基于信用数据, 继而发展到繁多的个人金融服务。该公司成立于2007年, 目前已经达到4,000万用户。占美国人口的12%, 非常可观。在美国credit score信用分数至关重要,大到房屋贷款,小到租房租车,对一个人的信用判断都强烈依赖于信用分数。
张韶峰:大数据重构中国信用体
下面我将重点阐述一下对大数据重构中国信用体系的一些思考。
各位都了解,自去年以来,国家密集出台开展社会信用体系建设的各种规划和实施意见。
由此预判,未来几年,应该是在国家主导下、在市场机构的参与下,共同探索和建立全民社会信用体系。
目前,中国的零售金融领域以及征信领域,落后于美国二三十年,但是互联网领域却只和美国相差两三年,甚至在某些细分领域还领先于美国。这样的差距以及中国巨大的市场机会,使得中国的金融发展不会走和美国相同的路径,而是会利用最先进的技术如移动互联网、云计算、大数据技术,跳跃式发展到一个新的模式阶段——互联网金融和大数据征信。
这个预测并非空穴来风,人民银行潘功胜行长在近期一次公开会议上特别提出,利用新技术条件发展新业态征信是需要积极面对的课题。央行对大数据公司进入征信系统持开放态度,并称预计不久将有大数据公司进入征信市场提供征信服务。
利用大数据来做征信,就是要把多种类型的数据绑定到一起,那这些数据怎么来,如何去组合,怎么计算,摆在我们面前的既是机会也是挑战。
我想给大家介绍的是,(一)传统的风险建模思路
20世纪50年代,一位工程师费尔(Bill Fair)和一位数学家艾塞科(Earl Isaac)发明了一个信用分的统计模型,80年代开始在美国流行,如今它是美国费爱哲(Fair Isaac)公司的专有产品——费爱哲评分(FICO)。美国三大征信机构都使用该信用分,每一份信用报告上都附有该信用分,以致费爱哲信用分成为信用分的代名词。
费爱哲信用分模型(以下简称传统模型)利用高达100万的大样本数据,首先确定刻画消费者的信用、品德,以及支付能力的指标,再把各个指标分成若干个档次以及各个档次的得分,然后计算每个指标的加权,最后得到消费者的总得分。传统模型的打分范围是300~850,三大征信机构各自输出自己的信用分数,分数越高,信用记录越好,三家的分数不能完全替代使用,但差别不大,相差在20分以内。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30