
SQL,是结构语言化查询语言(Structured Query Language)的简称。SQL语言是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统;同时也是数据库脚本文件的扩展名。
sqldf程序包是R语言中实用的数据管理辅助工具,sqldf程序包中比较常用的是sqldf函数中的select 语句。
#使用SQL语句操作数据框,需要加载的程序包sqldf,tcltk,使用iris数据集以及演示
library(sqldf)
library(tcltk)
head(iris)#了解数据集由5各变量组成
#取出前几行
a1r <- head(iris,10)#一般方法
a1s <- sqldf("select * from iris limit 10")#取出数据框的前六行,关键词limit
identical(a1r, a1s)#比较两个数据框是否相同
#取出子集
a2r <- subset(iris, grepl("^se", Species))#取出物种列中以se开头的数据子集
a2s <- sqldf("select * from iris where Species like 'se%'")#取出数据的子集,关键词like
all.equal(as.data.frame(a2r), a2s)#检验数据是否有差异
#指定某变量值为两个以上时的提取
a3r <- subset(iris, Species %in% c("setosa", "virginica"))#在iris数据集中,选出量物种是setosa和virginica的行
a3s <- sqldf("select * from iris where Species in ('setosa', 'virginica')")#注意单引号和双引号
row.names(a3r) <- NULL#a3r选的是子集,因而行名还是与原数据集相同
identical(a3r, a3s)
#指定某变量范围时数据集的提取
a4r <- subset(iris, Petal.Length >= 0 & Petal.Length <= 2.0)#选取breaks在20到30之间的数据
a4s <- sqldf("select * from iris where Petal.Length between 0 and 2.0", row.names = TRUE)#使用row.names=TRUE可以不把行名重命名
iris$Petal.Length
#数据合计
a5r <- aggregate(iris[1:2], iris[5], mean)#计算出了3个物种前两个变量的平均值
a5s <- sqldf('select Species, avg("Sepal.Length") `Sepal.Length`, avg("Sepal.Width") `Sepal.Width` from iris group by Species')#关键词group by
all.equal(a5r, a5s)#查看数据是否相同
# 提取某变量breaks从小到大排序后的前3行的数据,除数据属性和列名外相同
head(warpbreaks)
a6r <- head(warpbreaks[order(warpbreaks$breaks), ], 3)
a6s <- sqldf("select * from warpbreaks order by breaks limit 3")
# attributes(a6r) <- attributes(a6s) <- NULL#去除属性
row.names(a6r) <- NULL#去除列
identical(a6r, a6s)
# 提取某变量breaks从大到小排序后的前3行的数据,除数据属性和列名外相同
a7r <- head(warpbreaks[order(warpbreaks$breaks, decreasing = TRUE), ], 3)
a7s <- sqldf("select * from warpbreaks order by breaks desc limit 3")#关键词order by,desc表示降序
row.names(a7r) <- NULL
identical(a7r, a7s)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18