
提要:目前大数据的火热程度可见不一般,大数据真的创造如此高的价值吗?或者说创造价值的范围有那么广吗?以置于在很多三线城市的运营商都在做大数据项目。实践经验中发现,实际投入成本远远大于其中收益。还是说有非直观的,隐性的价值?
如果是泡沫,还能持续多久,破灭后会是一翻什么行业景象?
来自知乎网友何明璐的解答:
这个问题要分布对待,里面有泡沫,但是也有实实在在取得业务价值的案例。那这个问题如何来诊断和分析。
我们看到,对于大数据这个概念没有出来之前,其实对于大型电商平台,电信运营商,包括大的金融行业已经在做类似大数据方面的事情,以解决海量异构数据下的实时性问题。这些都有明确的业务场景驱动,用传统的一些技术解决起来困难,针对这些有明确业务场景驱动的项目本身并没有太多的泡沫。可以看到的是大型的电商平台,运营商或金融机构立项或研究做的,解决内部大数据场景下问题的的项目,基本还是有实际的业务参考价值。
还有一种就是完全是迎合大数据概念的,本身就不存在需要大数据的业务场景,由于大数据炒的火热,原来存在的各种应用都冠以大数据的名头。但是当仔细分析后发现一个是本身不存在大数据标准的业务场景,一个是我们提出的目标本身就是虚拟的并不是真实客户需要的目标。对于这类项目存在极大的泡沫。
来自VC Kevin Sure的回答:
有一定泡沫.
Michael Jordan(不是打篮球那个)的答案
先说说他讨论这个问题的资格。作为IEEE fellow,伯克利的Jordan教授是机器学习世界范围内最被尊敬的专家之一,在2013年还被邀请在美国国家研究委员会对相关领域的报告里作序总结。
他观点的骨架:
1. 目前的大数据给出的结果可靠性太低,如果急于应用到实际中,就好比是土木工程都没学好就开始造桥,结果只能造出“豆腐渣工程”。
2. 目前在computer vision领域进展还很小
3. neural network根本和人脑的neural network不是一回儿事,我们对大脑的理解根本没到可以引用到计算机科学的程度
对他观点的总结:
有些媒体为了让公众容易理解打了些比方,但是这种比方造成了太多误解,进而造成了太多hype(夸张的大肆宣传)。大数据还是一个没有足够严谨程度的科学,可能有一定的概率做出一些有用的预测,但是使用不当,过分过早地依赖,则会造成灾难性的后果。
很多时候大家过早对一个技术爆发热情,寄希望她可以改变世界,如果短时间没有成果,有可能热情一下子转冷又觉得这是个错误,加速抽离给这个技术的资源。显然Michael很担心现在公众对这个技术的热情,并不是基于对这个技术的理解,从而有可能会经历这样的态度转变。但是他认为这个领域是现实存在的,很多重要的应用,假以时日,是会创造价值的。但是现在很多媒体宣传,甚至投资行为,都是泡沫。
最后他觉得,如果他有10亿美元,一定会投入到natural language processing里面去。毕竟这是人机互动很重要的一个方面。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29