京公网安备 11010802034615号
经营许可证编号:京B2-20210330
提要:目前大数据的火热程度可见不一般,大数据真的创造如此高的价值吗?或者说创造价值的范围有那么广吗?以置于在很多三线城市的运营商都在做大数据项目。实践经验中发现,实际投入成本远远大于其中收益。还是说有非直观的,隐性的价值?
如果是泡沫,还能持续多久,破灭后会是一翻什么行业景象?
来自知乎网友何明璐的解答:
这个问题要分布对待,里面有泡沫,但是也有实实在在取得业务价值的案例。那这个问题如何来诊断和分析。
我们看到,对于大数据这个概念没有出来之前,其实对于大型电商平台,电信运营商,包括大的金融行业已经在做类似大数据方面的事情,以解决海量异构数据下的实时性问题。这些都有明确的业务场景驱动,用传统的一些技术解决起来困难,针对这些有明确业务场景驱动的项目本身并没有太多的泡沫。可以看到的是大型的电商平台,运营商或金融机构立项或研究做的,解决内部大数据场景下问题的的项目,基本还是有实际的业务参考价值。
还有一种就是完全是迎合大数据概念的,本身就不存在需要大数据的业务场景,由于大数据炒的火热,原来存在的各种应用都冠以大数据的名头。但是当仔细分析后发现一个是本身不存在大数据标准的业务场景,一个是我们提出的目标本身就是虚拟的并不是真实客户需要的目标。对于这类项目存在极大的泡沫。
来自VC Kevin Sure的回答:
有一定泡沫.
Michael Jordan(不是打篮球那个)的答案
先说说他讨论这个问题的资格。作为IEEE fellow,伯克利的Jordan教授是机器学习世界范围内最被尊敬的专家之一,在2013年还被邀请在美国国家研究委员会对相关领域的报告里作序总结。
他观点的骨架:
1. 目前的大数据给出的结果可靠性太低,如果急于应用到实际中,就好比是土木工程都没学好就开始造桥,结果只能造出“豆腐渣工程”。
2. 目前在computer vision领域进展还很小
3. neural network根本和人脑的neural network不是一回儿事,我们对大脑的理解根本没到可以引用到计算机科学的程度
对他观点的总结:
有些媒体为了让公众容易理解打了些比方,但是这种比方造成了太多误解,进而造成了太多hype(夸张的大肆宣传)。大数据还是一个没有足够严谨程度的科学,可能有一定的概率做出一些有用的预测,但是使用不当,过分过早地依赖,则会造成灾难性的后果。
很多时候大家过早对一个技术爆发热情,寄希望她可以改变世界,如果短时间没有成果,有可能热情一下子转冷又觉得这是个错误,加速抽离给这个技术的资源。显然Michael很担心现在公众对这个技术的热情,并不是基于对这个技术的理解,从而有可能会经历这样的态度转变。但是他认为这个领域是现实存在的,很多重要的应用,假以时日,是会创造价值的。但是现在很多媒体宣传,甚至投资行为,都是泡沫。
最后他觉得,如果他有10亿美元,一定会投入到natural language processing里面去。毕竟这是人机互动很重要的一个方面。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02