京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言语言来描述。
再巩固一下几个概念:
1、正态分布:也叫高斯分布,用最浅显的话来说就是一种“中间多,两边少”的分布;反映在数据上,就是数值在所有数据中间的数量多,偏离中间的数据少;
2、偏度:偏度分布是正态分布的父集,即正态分布的偏度为0;右偏分布(正偏分布)的偏度>0,左偏分布(负偏分布)的偏度<0.如下图所示:
3、峰度:正态分布的偏度值为3;厚尾(峰度>3),瘦尾(峰度<3);主要是看概率密度函数的两侧(尾部):
九、数组与矩阵
R提供了简单的工具处理数组以及矩阵。
1)数组
维数向量是元素都非负的向量,指示数组或矩阵的维数
矩阵的维数是2维
> dim(my_num)<-c(2,5)
> my_num
[,1] [,2] [,3] [,4] [,5]
[1,] 11 34 14 21 11
[2,] 22 71 68 22 34
数组的维数是1维
> dim(my_num)<-c(10)
> my_num
[1] 11 22 34 71 14 68 21 22 11 34
一维数组
> c(x[1],x[3])
[1] 11 3388
> x
[1] 11 22 3388
二维数组
使用维数向量设置数组维数:
> dim(h)<-c(2,3)
> h
[,1] [,2] [,3]
[1,] 12 15 982
[2,] 32 67 321
数组切片操作:
> c(h[1,2],h[2,3])
[1] 15 321
> h[2,]
[1] 32 67 321
如果我们切片仅使用一个下标或一个索引向量,则会直接取适合位置的元素,不受数组维数影响
> h[c(1,2,3)]
[1] 12 32 15
> h[6]
[1] 321
> h[4]
[1] 67
2)索引矩阵
> array(10:20,dim=c(2,5))->x
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 10 12 14 16 18
[2,] 11 13 15 17 19
> array(c(1:3,5:4,3:5),dim=c(2,3))->i
> i
[,1] [,2] [,3]
[1,] 1 3 4
[2,] 2 5 3
将索引向量指向的元素提取出来,形成一个向量
> x[i]
[1] 10 11 12 14 13 12
对指向的元素赋值
> x[i]<-111
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 111 111 111 16 18
[2,] 111 111 15 17 19
3)array使用
Array函数的参数有3个,第一个是需要形成数组元素的数据,第二个是dim参数提示维度
> c(1:20)->h
> mya<-array(h,dim=c(4,5))
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
> mydim<-c(2,10)
> mya<-array(h,dim=c(2,10))
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 3 5 7 9 11 13 15 17 19
[2,] 2 4 6 8 10 12 14 16 18 20
> dim(mya)
[1] 2 10
第一个参数既可以是向量也可以是单个值
> mya<-array(1,dim=c(2,10))
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 1 1 1 1
[2,] 1 1 1 1 1 1 1 1 1 1
4)数组运算
逐元素运算
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 3 5 7 9 11 13 15 17 19
[2,] 2 4 6 8 10 12 14 16 18 20
> myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 2 2 2 2 2 2 2 2 2
[2,] 2 2 2 2 2 2 2 2 2 2
> mya+myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 3 5 7 9 11 13 15 17 19 21
[2,] 4 6 8 10 12 14 16 18 20 22
> mya*myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 6 10 14 18 22 26 30 34 38
[2,] 4 8 12 16 20 24 28 32 36 40
> 3*mya*myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 6 18 30 42 54 66 78 90 102 114
[2,] 12 24 36 48 60 72 84 96 108 120
> mya*myb+mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 3 9 15 21 27 33 39 45 51 57
[2,] 6 12 18 24 30 36 42 48 54 60
2个数组的外积
定义以下向量:
列向量 u(b1,b2,b3,b4)
行向量 v(a1,a2,a3)
它们的外积%o%被定义为:
R语言学习笔记 四0
> b<-array(c(1:4))
> a<-array(c(5:6))
> b%o%a
[,1] [,2]
[1,] 5 6
[2,] 10 12
[3,] 15 18
[4,] 20 24
> b
[1] 1 2 3 4
> a
[1] 5 6
再举一个例子
> b<-array(c(1:4))
> a<-array(c(5:8))
> a*b
[1] 5 12 21 32
> b
[1] 1 2 3 4
> a
[1] 5 6 7 8
> a%o%b
[,1] [,2] [,3] [,4]
[1,] 5 10 15 20
[2,] 6 12 18 24
[3,] 7 14 21 28
[4,] 8 16 24 32
生成的数组向量则由 2个数数组向量元素所有可能乘积得到
矩阵转置
5)、使用t完成标准的矩阵转置
> array(h,dim=c(2,5))->mya
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> t(mya)
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
2、使用aperm函数实现矩阵转置
aperm有2个常用的参数
第一个参数是需要转置的矩阵,第二个参数perm指示新矩阵相对于第一个参数矩阵的维度的下标,比如说,将行转换为列,将列转换为行,将行列次序更换,将第一维的元素与第二维的元素互换,perm设为c(2,1),perm中是维度下标,不是矩阵下标。数据分析培训
> array(h,dim=c(2,5))->mya
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> aperm(mya)->myb
> myb
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
> aperm(mya,perm=c(2,1))->myb
> myb
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
如果将perm设为c(1,2)表示不交换原矩阵的维度,即不做操作
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> aperm(mya,perm=c(1,2))->myb
> myb
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
我们再来看一个3维数组
> array(mya,c(2,2,5))->mya1
> mya1
, , 1
[,1] [,2]
[1,] 1 3
[2,] 2 4
, , 2
[,1] [,2]
[1,] 5 7
[2,] 6 8
, , 3
[,1] [,2]
[1,] 9 1
[2,] 10 2
, , 4
[,1] [,2]
[1,] 3 5
[2,] 4 6
, , 5
[,1] [,2]
[1,] 7 9
[2,] 8 10
> aperm(mya1,perm=c(2,1,3))->myb1
> myb1
, , 1
[,1] [,2]
[1,] 1 2
[2,] 3 4
, , 2
[,1] [,2]
[1,] 5 6
[2,] 7 8
, , 3
[,1] [,2]
[1,] 9 10
[2,] 1 2
, , 4
[,1] [,2]
[1,] 3 4
[2,] 5 6
, , 5
[,1] [,2]
[1,] 7 8
[2,] 9 10
> aperm(mya1,perm=c(1,3,2))->myb1
> myb1
, , 1
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 3 7
[2,] 2 6 10 4 8
, , 2
[,1] [,2] [,3] [,4] [,5]
[1,] 3 7 1 5 9
[2,] 4 8 2 6 10
矩阵的维数与行列数
> ncol(mya)
[1] 5
> nrow(mya)
[1] 2
> dim(mya)
[1] 2 5
6)矩阵乘积
若A为m×n矩阵,B为n×r矩阵,则他们的乘积AB(有时记做A· B)会是一个m×r矩阵,但前提是m与n相同时才有定义。
> a
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> b
[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
> a %*% b
[,1] [,2]
[1,] 95 220
[2,] 110 260
7)内积
使用crossprod函数求内积。
A.向量内积
设向量A=[x1,x2,...xn],B=[y1,y2,...yn],则矢量A和B的内积表示为:A·B=x1×y1+x2×y2+……+xn×yn。
> a<-c(1:3)
> b<-c(4:6)
> crossprod(a,b)
[,1]
[1,] 32
B.矩阵内积
矩阵内积的计算方式相当于第一个参数的转置乘以第二个参数,这个乘法是矩阵乘法。
> b<-array(c(4:6),dim=c(1,3))
> a<-array(c(1:3),dim=c(1,3))
> a
[,1] [,2] [,3]
[1,] 1 2 3
> b
[,1] [,2] [,3]
[1,] 4 5 6
> crossprod(a,b)
[,1] [,2] [,3]
[1,] 4 5 6
[2,] 8 10 12
[3,] 12 15 18
> t(a) %*% b
[,1] [,2] [,3]
[1,] 4 5 6
[2,] 8 10 12
[3,] 12 15 18
C.对角矩阵
通过向量生成矩阵
> a
[1] 1 2 3 4 5 6 7 8
> diag(a)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 0 0 0 0 0 0 0
[2,] 0 2 0 0 0 0 0 0
[3,] 0 0 3 0 0 0 0 0
[4,] 0 0 0 4 0 0 0 0
[5,] 0 0 0 0 5 0 0 0
[6,] 0 0 0 0 0 6 0 0
[7,] 0 0 0 0 0 0 7 0
[8,] 0 0 0 0 0 0 0 8
取矩阵的对角线元素组成向量
> a<-array(c(1:16),dim=c(4,4))
> diag(a)
[1] 1 6 11 16
> a
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23