京公网安备 11010802034615号
经营许可证编号:京B2-20210330
怎样管理你的钱 金融行业大数据应用深度分析
1金融行业用户画像
关注PConline企业站的朋友可能了解,此前的文章报道当中笔者和大家聊过大数据技术在教育行业当中的很多应用,我们都知道,现在是一个数据快速爆发的一个发展时代,蕴含很多机遇的同时也给很多IT企业带来了挑战,尤其是一些很多传统企业,就像我们之前聊过的教育行业那样。本期笔者再和大家来聊一个大数据时代背景下发生改变的传统行业,金融行业。
大数据应用金融排第三
根据权威市场研究机构的调查结果显示,当今国内大数据在行业当中的具体应用占比,最高的是互联网行业,其次是电信行业,第三就是金融领域,由此我们不难看出金融行业对于这种新兴IT技术的需求量还是非常庞大的。
根据麦肯锡公司给出的调查报告显示,再把金融行业进行细分的话,银行将会成为金融行业在大数据领域当中的重点应用,证券和保险分别排在第二和第三,当前国内已经很多银行开始通过大数据技术来对业务的推动和发展保驾护航,在一些银行的信用卡中心业务方面就已经实现了利用大数据技术保障实时的业务营销。
金融行业用户画像
当前金融行业在运用大数据技术的过程当中,其实还是存在着一些问题和困扰的,比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但现实的情况却是,该用户的信用卡和工资卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。
从上述问题我们不难发现,金融领域在进行大数据技术的植入过程当中,一定要首先通过整合当今的众多新技术,比如社交媒体、比如云端SaaS应用、比如用户在网络上反应的实际问题等等。企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况。
金融企业如何更好的营销
有专家曾经指出,对于金融行业的企业来说,实时营销的方式方法是很重要的,实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销。
还有就是交叉营销的方式,不同业务或产品的交叉推荐,比如一些银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售。
还有一类就是我们平时经常会遇到的方式,那就是根据用户的数据分析出用户的属性和特点,从而进行个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广。
利用大数据更好的优化运营
通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。
银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题,对于正面信息,可以加以总结并继续强化。
对于像金融、教育等这类传统行业的企业来说,要想植入全新的技术理念和应用其实相比一些互联网行业以及年轻行业要难的多,但是我们不断的发现往往像云计算、大数据这类新兴技术在传统行业当中的应用却更为广泛和迅速,这对于推动整个大数据产业的良性发展是具有非常积极意义的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22