京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在进行K均值聚类分析时,如何确定最优的分类数是一个非常重要的问题。一般来说,确定分类数需要考虑数据的特征和研究目的。下面将介绍一些常用的方法来确定最优的分类数。
肘部法是一种比较简单的方法,它的原理是计算不同分类数下的误差平方和(SSE),找到SSE随分类数增加而降低的拐点。这个拐点称为“肘部”,对应的分类数就是最优分类数。通常情况下,随着分类数的增加,SSE会逐渐减小,但是当分类数增加到一定程度时,SSE的降幅会变得越来越小,而这个点就是所谓的“肘部”。
使用肘部法需要画出不同分类数下的SSE曲线图,然后根据图形判断“肘部”在哪里。选择最优分类数的过程通常是比较主观的,因此需要结合实际情况进行判断。
轮廓系数法是一种基于样本之间距离和聚类结果的评估方法,它可以衡量每个样本被分配到的簇的紧密度和分离度。轮廓系数法计算每一个样本的轮廓系数,然后对所有样本的轮廓系数求平均值作为聚类结果的整体评价指标。轮廓系数的取值范围在-1到1之间,越接近1表示样本被正确地分类到了相应的簇中,越接近-1表示样本被错误地分类到了其他簇中。
使用轮廓系数法需要计算不同分类数下的平均轮廓系数,然后选择具有最大平均轮廓系数的分类数作为最优分类数。与肘部法相比,轮廓系数法能够更客观地评估聚类效果,并且可以避免一些特别情况下肘部法判断不准确的问题。
Gap统计量法是一种基于随机模拟的评估方法,它通过比较实际数据集和随机生成数据集的聚类结果来确定最优分类数。具体来说,Gap统计量法会随机生成一些数据集,然后在每个数据集上运行K均值聚类算法得到聚类结果,同时也在原始数据集上运行K均值聚类算法得到聚类结果。然后通过比较聚类结果之间的误差平方和来计算Gap统计量。最优分类数是使得Gap统计量达到最大的分类数。
使用Gap统计量法需要注意的是,随机生成数据集的数量会影响结果的可靠性。一般来说,需要进行多次随机模拟,并选择最常出现的分类数作为最优分类数。
DB指数是一种基于样本之间距离和簇内距离的评估方法,它可以比较不同分类数下的聚类效果,同时也可以衡量聚类簇之间的分离度和聚类簇内部的紧密度。DB指数的取值范围在0到正无穷之间,越接近0表示聚类效果
越好,越大则表示聚类效果越差。
使用DB指数需要计算不同分类数下的DB值,并选择具有最小DB值的分类数作为最优分类数。和轮廓系数法一样,DB指数能够比较客观地评估聚类效果,但是它对于数据集中存在异常点或噪声的情况表现相对较差。
总之,确定最优分类数是K均值聚类分析中非常重要的一个步骤,选择合适的方法需要根据实际情况进行判断。如果数据集没有明显的分布特征,可以尝试多种方法进行比较,以选择最优分类数。同时,需要注意不同方法之间的局限性,并结合实际情况进行综合考虑。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25