
Python3中的pandas库是一个非常强大的数据处理工具,尤其在与SQL Server等关系型数据库交互时,可以帮助我们快速进行数据读写和分析。本文将介绍一些方法来加快Python3 pandas对SQL Server的读写速度。
一、读取SQL Server数据
1.使用pyodbc连接数据库和读取数据
pyodbc是Python3中连接所有ODBC兼容的数据库的标准库,在读取SQL Server数据时也可以使用它。使用pyodbc要注意两个主要问题:首先安装pyodbc库,并添加ODBC驱动程序,然后使用正确的DSN名称来配置DSN(只有Windows)或完整的连接字符串(最佳选择)。
2.使用read_sql_query()方法读取数据
pandas库提供了read_sql_query()方法来从SQL Server读取数据。该方法需要传递一个SQL查询字符串和一个有效的DB API 2.0连接对象。但是,由于pandas默认使用sqlite3包,因此需要额外指定SQL Server的驱动程序(例如,pymysql),并确保能够通过pip安装所需的软件包。
3.适当地使用DataFrame类型
pandas的DataFrame类型是大多数pandas操作的核心。当从SQL Server读取数据时,将结果集作为DataFrame类型返回是方便的,但是这可能会导致性能问题。如果结果集太大,数据可能不适合内存,因此建议在读取数据时使用适当的分块大小或者只选择需要的列。
二、写入SQL Server数据
1.使用to_sql()方法写数据
pandas库的to_sql()方法可以将DataFrame类型的数据写入SQL Server数据库中。该方法需要传递一个有效的DB-API 2.0连接对象和目标表的名称。但是,由于pandas默认使用sqlite3包,因此需要额外指定SQL Server的驱动程序(例如,pymysql),并确保能够通过pip安装所需的软件包。
2.使用批量插入来提高性能
在将大量数据写入SQL Server时,可以使用批量插入技术来提高性能。 pandas库提供了许多选项来使用批量插入技术,其中一种是使用to_sql()方法中的chunksize参数。 chunksize参数可以将DataFrame拆分为小块,每个块都可以作为单独的事务进行提交。这可以减少锁定和提交时间,并使操作更加快速。
3.使用SQLite作为缓存
如果要频繁地读取和写入小型数据集,则可以使用SQLite作为缓存,在本地文件中存储数据。 pandas有一个名为read_sql_table()的方法,它可以从SQLite缓存中读取表格数据。要将数据写入SQLite缓存,请使用to_sql()方法,同时指定CONNECTION_URL参数以指向SQLite数据库。
以上是Python3 pandas如何加快SQL Server读写速度的一些常用方法。在使用这些方法时,需要注意选择合适的批量大小、指定正确的驱动程序、减少内存使用等问题,以实现更高效的数据读写和分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28