京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的互联网化 能源行业如何利用数据发展
1能源行业大数据的互联网化
马云曾经说过一句话,当今以及未来的世界当中,最珍贵的能源就是大数据。获取你认为这句话有点以偏概全了,但是我们不可否认的是随着云计算和大数据技术的兴起和快速发展,在很多行业当中都已经可以看到了大数据技术的应用,对于能源行业也不例外。
现在很多专家都在谈能源互联网的概念,专家指出,能源互联网绝不仅仅是信息单纯的开放,或是能量交换的开放,用户需要的是一种方式把所有人的积极性调动起来,在建网方面、建管道、建储能、搞通信等等方面都能够进行信息交换,从而利用大数据技术的实施来使得能源行业的业务推动起来更快更好。
能源行业利用大数据做“互联网化”
未来分布式能源等越来越广泛,就出现了源用混合的场景。一旦源用混合变成常态,在各个地区就会自主地形成一些区域,既有源、也有用,甚至配有新能源,可以储能,所有的环节都在一个小的区域里,这个构架是对现有架构的补充,既有自下而上,也需要跟大电网的可靠性衔接。
能源互联网不仅是信息的开放,还是能量交换的开放,我们需要一种方式把大家的积极主动性调动起来,你建、他建,有建网的、有建源的、有建管道的、有建储能的,有搞信息的、有搞通信的,能够一块对等的互联,分享能量交换的基础设施,进而交换信息,最终就是价值交换。如果在这几个层面上都能以能源互联网的思路打通,将是未来能源基础设施相当大的格局上的变化。
大数据在其中的深度应用
负荷信息在传统的能源行业当中一直都是一个非常难解决的问题,随着大数据技术发展到今天,上述的IT困难已经到了被彻底改变的时候了,越来越多的能源行业企业开始把负荷信息在线的建模、辨识、状态评估、甚至预测,拿到参数,然后跟能源互联网去互动,进而参与到整个区域的能量管理。
对供电、供能的质量信息采集是在线实时监测的一种,比如涉及到暂态问题数据量就会比较大。基于这样的数据可以做非常多的事情,不光是负荷的建模和分析,电能质量分析,还有分布式能源的接入,数据时时刻刻在变,将信息按需要采集上来,根据负载动态调度。多能规划调度不仅考虑电,还要考虑冷热的需求。
同时,系统安全问题也是一个需要重点考量的问题,能源互联网需要类似配网的自动故障诊断功能,同时接入上层的电网互动时也需要有一个接口,不仅需要提高信息的安全性,还需要提高电网运行的安全性。
大数据方案究竟有啥用
在能源行业用户针对大数据解决方案的应用过程中,一般是通过两种方式来解决的,一种是垂直的解决方案,这种应用的方案从数据采集到上层应用来讲都是垂直进行的,还有一种就是水平的,上来的是通用信息,构建IaaS、PaaS、SaaS云平台,然后再开发新的应用。
针对现在的能源行业企业来说,采用第二种水平式的方案数量是比较多的,在这个基础上做各种的数据清理、同步、识标,变成数据仓库进行数据的统计和挖掘,进而进行大数据分析,深度学习、大规模神经网络等等新技术,怎么来运用到这里边进行学习、关联和分类,都有非常大的空间。这样大量的能源互联网在线运行数据对于数据的研究者是非常有价值的。
就像我们此前报道的那样,在金融、医疗、教育等等很多行业现在的大数据技术都已经开始了各种非常深度的合作,我们不难发现,未来的信息时代和IT技术时代必将会与云计算和大数据进行非常紧密的结合,那么对于行业用户来说,行业化的全数字转型也已经被更多的企业提及,这点对于行业企业市场的发展来说,是十分有必要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27